
Memory and Data Locality
(The C Memory Model)

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/


Outline

Topics and Learning Objectives

• Motivate our discussion on memory

• Discuss memory access timing

• Discuss the C memory model

• Discuss locality

Exercise

• Sets and Lists (tangentially related)

2



Exercise



Code Demos

4



Process Memory
Text: contains your compiled 

code

Data: contains initialized 
static and global variables

BSS: contains uninitialized 
static and global variables

Heap: contains dynamically 
allocated memory

Stack: contains local variables

Memory LayoutAddress

0 x 0000 0000 0000

0 x FFFF FFFF FFFF

Data

BSS

Heap

Stack

Text

5



Process Memory
Text: contains your compiled 

code

Data: contains initialized 
static and global variables

BSS: contains uninitialized 
static and global variables

Heap: contains dynamically 
allocated memory

Stack: contains local variables

Memory LayoutAddress

0 x 0000 0000 0000

0 x FFFF FFFF FFFF

Data

BSS

Heap

Stack

Text

6



char* string = “hello”;

int iSize;

char* f(void)

{

  char* p;

  iSize = 8;

  p = malloc(iSize);

  return p;

}

Memory Layout

Data (initialized)

BSS (uninitialized)

Heap (dynamic)

Stack (local)

Text (code)

https://www.cs.princeton.edu/courses/archive/fall07/cos217/lectures/06MemoryAllocation-3x1.pdf

Read through the code for a few moments.

7



char* string = “hello”;

int iSize;

char* f(void)

{

  char* p;

  iSize = 8;

  p = malloc(iSize);

  return p;

}

Memory Layout

Data (initialized)

BSS (uninitialized)

Heap (dynamic)

Stack (local)

Text (code)

What goes in Text?

8



char* string = “hello”;

int iSize;

char* f(void)

{

  char* p;

  iSize = 8;

  p = malloc(iSize);

  return p;

}

Memory Layout

Data (initialized)

BSS (uninitialized)

Heap (dynamic)

Stack (local)

Text (code)

What goes in Text?

9



char* string = “hello”;

int iSize;

char* f(void)

{

  char* p;

  iSize = 8;

  p = malloc(iSize);

  return p;

}

Memory Layout

Data (initialized)

BSS (uninitialized)

Heap (dynamic)

Stack (local)

Text (code)

What goes in Data?

10



char* string = “hello”;

int iSize;

char* f(void)

{

  char* p;

  iSize = 8;

  p = malloc(iSize);

  return p;

}

Memory Layout

Data (initialized)

BSS (uninitialized)

Heap (dynamic)

Stack (local)

Text (code)

What goes in Data?

11



char* string = “hello”;

int iSize;

char* f(void)

{

  char* p;

  iSize = 8;

  p = malloc(iSize);

  return p;

}

Memory Layout

Data (initialized)

BSS (uninitialized)

Heap (dynamic)

Stack (local)

Text (code)

What goes in BSS?

12



char* string = “hello”;

int iSize;

char* f(void)

{

  char* p;

  iSize = 8;

  p = malloc(iSize);

  return p;

}

Memory Layout

Data (initialized)

BSS (uninitialized)

Heap (dynamic)

Stack (local)

Text (code)

What goes in BSS?

13



char* string = “hello”;

int iSize;

char* f(void)

{

  char* p;

  iSize = 8;

  p = malloc(iSize);

  return p;

}

Memory Layout

Data (initialized)

BSS (uninitialized)

Heap (dynamic)

Stack (local)

Text (code)

What goes in Heap?

14



char* string = “hello”;

int iSize;

char* f(void)

{

  char* p;

  iSize = 8;

  p = malloc(iSize);

  return p;

}

Memory Layout

Data (initialized)

BSS (uninitialized)

Heap (dynamic)

Stack (local)

Text (code)

What goes in Heap?

15



char* string = “hello”;

int iSize;

char* f(void)

{

  char* p;

  iSize = 8;

  p = malloc(iSize);

  return p;

}

Memory Layout

Data (initialized)

BSS (uninitialized)

Heap (dynamic)

Stack (local)

Text (code)

What goes in Stack?

16



char* string = “hello”;

int iSize;

char* f(void)

{

  char* p;

  iSize = 8;

  p = malloc(iSize);

  return p;

}

Memory Layout

Data (initialized)

BSS (uninitialized)

Heap (dynamic)

Stack (local)

Text (code)

What goes in Stack?

17



char* string = “hello”;

int iSize;

char* f(void)

{

  char* p;

  iSize = 8;

  p = malloc(iSize);

  return p;

}

Memory Layout

Data (initialized)

BSS (uninitialized)

Heap (dynamic)

Stack (local)

Text (code)

18



Stack and Heap Resources

• https://www.cs.princeton.edu/courses/archive/fall07/cos217/lecture
s/06MemoryAllocation-3x1.pdf

• https://doc.rust-lang.org/1.6.0/book/the-stack-and-the-heap.html

• https://www.usna.edu/Users/cs/aviv/classes/ic221/s16/lec/08/lec.ht
ml

• https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

• https://stackoverflow.com/questions/79923/what-and-where-are-
the-stack-and-heap

19

https://www.cs.princeton.edu/courses/archive/fall07/cos217/lectures/06MemoryAllocation-3x1.pdf
https://www.cs.princeton.edu/courses/archive/fall07/cos217/lectures/06MemoryAllocation-3x1.pdf
https://doc.rust-lang.org/1.6.0/book/the-stack-and-the-heap.html
https://www.usna.edu/Users/cs/aviv/classes/ic221/s16/lec/08/lec.html
https://www.usna.edu/Users/cs/aviv/classes/ic221/s16/lec/08/lec.html
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://stackoverflow.com/questions/79923/what-and-where-are-the-stack-and-heap
https://stackoverflow.com/questions/79923/what-and-where-are-the-stack-and-heap


Principle of Locality

• Locality: programs tend to reuse data and instructions near those 
they have used recently

• Temporal locality: recently referenced items are likely to be 
referenced again in the near future

• Spatial locality: items with nearby addresses tend to be referenced 
close together in time

20



Discontiguous data structures are the root of all evil. This is 
simply a fact. If you don't believe me, I'll try to convince you. 
Specifically, please say "no" to linked lists. OK. Please. Please 

say no to linked lists. There is almost nothing more harmful you 
can do to the performance of an actual modern microprocessor 

than to use a linked list data structure.

Chandler Carruth (Engineer at Google) @ CppCon 2014

(YouTube) Efficiency with Algorithms, Performance with Data Structures

21

https://www.youtube.com/watch?v=fHNmRkzxHWs&app=desktop


Discontiguous data structures are the root of all evil. This is 
simply a fact. If you don't believe me, I'll try to convince you. 
Specifically, please say "no" to linked lists. OK. Please. Please 

say no to linked lists. There is almost nothing more harmful you 
can do to the performance of an actual modern microprocessor 

than to use a linked list data structure.

(YouTube) Efficiency with Algorithms, Performance with Data Structures

Chandler Carruth (Engineer at Google) @ CppCon 2014

22

https://www.youtube.com/watch?v=fHNmRkzxHWs&app=desktop


Notice that 
the amount 

of space gets 
bigger as you 
go down the 

hierarchy

25



(Simplified) Cache View

Register

L1 Cache

L2 Cache

L3 Cache

Memory

1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1 Cache

4. On miss, looks in L2 Cache

5. On miss, looks in L3 Cache

6. On miss, finds it in memory

(in “virtual” memory)

Faster Bigger

26



Efficiency with Algorithms, Performance with Data Structures

Entity Time (nanoseconds) Note

One cycle on a 3 GHz processor 1

L1 cache reference 0.5

Branch mis-predict 5

L2 cache reference 7 14x L1 cache

Mutex lock/unlock 25

Main memory reference 100 20x L2; 200x L1

Compress 1k bytes with Snappy 3,000

Send 1K bytes over 1 Gbps network 10,000

Read 4K randomly from SSD 150,000

Read 1 MB sequentially from main memory 250,000

Round trip with the same datacenter 500,000

Read 1 MB sequentially from SSD 1,000,000 4x main memory

Disk seek 10,000,000 20x datacenter round trip

Read 1 MB sequentially from Disk 20,000,000 80x main memory; 20x SSD

Send package CA -> Netherlands -> CA 150,000,000
27

https://www.youtube.com/watch?v=fHNmRkzxHWs&app=desktop


Memory Layout

Data

BSS

Heap

Stack

Text

28



Intel Haswell

29



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

30



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

31



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

32



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

33



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

34



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

35



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

36



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

What if the next item was right next to the first item?

CPU

37



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

What if the next item was right next to the first item?

38



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

What if the next item was right next to the first item?

39



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

What if the next item was right next to the first item?

40



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

What if the next item was right next to the first item?

41



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

What if the next item was right next to the first item?

42



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU

What if the next item was right next to the first item?

43



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

What if the next item is far away from these two?

CPU

44



1. CPU needs a piece of memory

2. Needs to load it into a register

3. Looks in L1

4. On miss, looks in L2

5. On miss, looks in L3

6. On miss, finds it in memory

(in “virtual” memory)

64 bits 64 bits

CPU
What if the next item is far away from these two?

45



std::vector vs std::list

Which has better locality?
Meaning, which will work better with cache?

46



Adjacency Matrix Adjacency List

What does this picture look like for:
1. An Adjacency Matrix
2. An Adjacency List

47



Sorted Array Search Tree

What does this picture look like for:
1. A Sorted Array
2. A Binary Search Tree
3. A Heap

Heap

What does 
extract min 
look like?

48


	Slide 1: Memory and Data Locality
	Slide 2: Outline
	Slide 3: Exercise
	Slide 4: Code Demos
	Slide 5: Process Memory
	Slide 6: Process Memory
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Stack and Heap Resources
	Slide 20: Principle of Locality
	Slide 21
	Slide 22
	Slide 25
	Slide 26: (Simplified) Cache View
	Slide 27
	Slide 28
	Slide 29: Intel Haswell
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

