
Dijkstra’s Algorithm
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/


Dijkstra’s Single-Source 
Shortest Path Algorithm



Outline

Topics and Learning Objectives

• Discuss graphs with edge weights

• Discuss shortest paths

• Discuss Dijkstra’s algorithm including a proof

Exercise

• Dijkstra’s Algorithm

4



Extra Resources

• Introduction to Algorithms, 3rd, chapter 24

• Algorithms Illuminated Part 2: Chapter 9

5



Dijkstra’s 
Algorithm

Find the shortest path between a 
start vertex s and every other vertex 
in the graph G

Can halt the algorithm if you only 
want to find shortest path to a 
specific vertex (for example, a 
destination city)

Uses:

• Network routing

• Path planning

• Etc.

6



Dijkstra’s 
Algorithm

Find the shortest path between a 
start vertex s and every other vertex 
in the graph G

Can halt the algorithm if you only 
want to find shortest path to a 
specific vertex (for example, a 
destination city)

Uses:

• Network routing

• Path planning

• Etc.

7



Dijkstra’s Algorithm

Input 

• A weighted graph G = (V,E) and 

• A source vertex s

Output
• for all v in V we output the length of the shortest path from s → v 
• you can also output the actual path, but we’ll just worry about length for now

Assumptions
• A path exists from s to every other node (how can we check this property?)

• All edge weights are non-negative

8



s

w

v

t

1

4

2

6

3

What is the shortest path from S to all other vertices?

9



How did we do shortest path before?

• BFS

• How can we modify that process to work for graphs with weighted 
edges?

• Why would we not want to do that?

3 1 1 1

10



FUNCTION Dijkstra(G, start_vertex)

found = {}

lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)

lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found

FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight

IF vOther_length < min_length

min_length = vOther_length

vMin = vOther

found.add(vMin)

lengths[vMin] = min_length

RETURN lengths

Dijkstra’s greedy criterion

Computed in previous 
iterations

This is now a set instead 
of a dictionary

Initialize min_length

11



FUNCTION Dijkstra(G, start_vertex)

found = {}

lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)

lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found

FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight

IF vOther_length < min_length

min_length = vOther_length

vMin = vOther

found.add(vMin)

lengths[vMin] = min_length

RETURN lengths

found
(set)

V - found
(set)

v vOther
weight

12



FUNCTION Dijkstra(G, start_vertex)

found = {}

lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)

lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found

FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight

IF vOther_length < min_length

min_length = vOther_length

vMin = vOther

found.add(vMin)

lengths[vMin] = min_length

RETURN lengths

1

3

2

4

1

4 2

6

3

13

Iteration 1:



FUNCTION Dijkstra(G, start_vertex)

found = {}

lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)

lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found

FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight

IF vOther_length < min_length

min_length = vOther_length

vMin = vOther

found.add(vMin)

lengths[vMin] = min_length

RETURN lengths

1

3

2

4

1

4 2

6

3

14

Iteration 2:



Exercise



Dijkstra’s Algorithm with negative edges

• How might you deal with negative edges?

• How about adding some value to every edge?

s

v

t

1

-2

-5

What is the shortest 
path from s to t?

16



Dijkstra’s Algorithm with negative edges

• How might you deal with negative edges?

• How about adding some value to every edge?

s

v

t

6

3

0

What is the shortest 
path from s to t?

17



Dijkstra’s Algorithm with negative edges

• How might you deal with negative edges?

• How about adding some value to every edge?

s

v

t

1

-2

-5
+5 +5

+5

We would add a different amount to each path!

What is the shortest 
path from s to t?

18



Dijkstra’s Algorithm

• What have we done so far?

• We’ve only shown that it works for the given example.

• This is not enough to prove correctness.

• In general, examples are good for:
• Demonstration

• Contradictions

• They are not good for proving correctness.

19



Proof by Induction Cheat-sheet

Proof by induction that P(n) holds for all n

1. P(1) holds because <something about the code/problem>

2. Let’s assume that P(k) (where k < n) holds.

3. P(n) holds because of P(k) and <something about the code>

4. Thus, by induction, P(n) holds for all n

P(1) P(2) P(3) P(k) P(n)…

1 24 4 4 3

20



Correctness

Theorem for Dijkstra’s algorithm: 

For every graph with non-negative edge lengths, Dijkstra’s algorithm 
computes all shortest path distances from start_vertex to every 
other vertex

Base Case: 

• lengths[start_vertex] = 0

Proof by induction that P(n) holds for all n

• P(1) holds because …

• Let’s assume that P(k) (where k < n) holds.

• P(n) holds because of P(k) and …

• Thus, by induction, P(n) holds for all n

21



Correctness

Theorem for Dijkstra’s algorithm: 

For every graph with non-negative edge lengths, Dijkstra’s algorithm 
computes all shortest path distances from start_vertex to every 
other vertex

Inductive Hypothesis:

• Assume all previous iterations produce correct shortest paths

• For all v in found, lengths[v] = shortest path length from 
start_vertex to v

Proof by induction that P(n) holds for all n

• P(1) holds because …

• Let’s assume that P(k) (where k < n) holds.

• P(n) holds because of P(k) and …

• Thus, by induction, P(n) holds for all n

22



Inductive Step
(look at code)

FUNCTION Dijkstra(G, start_vertex)

found = {}

lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)

lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found

FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight

IF vOther_length < min_length

min_length = vOther_length

vMin = vOther

found.add(vMin)

lengths[vMin] = min_length

RETURN lengths

Proof by induction that P(n) holds for all n

• P(1) holds because …

• Let’s assume that P(k) (where k < n) holds.

• P(n) holds because of P(k) and …

• Thus, by induction, P(n) holds for all n

23



Inductive Step

In the current iteration:

• We pick an edge (v*, vMin) based on Dijkstra’s greedy criterion 

• add vMin to found

• Set the path length of vMin → lengths[vMin] = lengths[v*] + weightv*,vMin

What do we know about lengths[v*]?

• Optimal path to v*, and we won’t find a better path to vMin

Our inductive hypothesis states 
that it is the minimal path length

How do we prove this? Loop Invariant

Proof by induction that P(n) holds for all n

• P(1) holds because …

• Let’s assume that P(k) (where k < n) holds.

• P(n) holds because of P(k) and …

• Thus, by induction, P(n) holds for all n

24



Inductive Step

In the current iteration:

• We pick an edge (v*, vMin) based on Dijkstra’s greedy criterion 

• add vMin to found

• Set the path length of vMin → lengths[vMin] = lengths[v*] + weightv*,vMin

What do we know about lengths[v*]?

• Optimal path to v*, and we won’t find a better path to vMin

By our inductive hypothesis, our theorem for Dijkstra’s is correct

Our inductive hypothesis states 
that it is the minimal path length

How do we prove this? Loop Invariant

Proof by induction that P(n) holds for all n

• P(1) holds because …

• Let’s assume that P(k) (where k < n) holds.

• P(n) holds because of P(k) and …

• Thus, by induction, P(n) holds for all n

25



Correctness

s

v*

y

vMin

x

found V - found

weightx,vMin

weightx,y

weightv*,y

weightv*,vMin

How many different types of paths do we consider each iteration?

some non-negative 
path length

some non-negative 
path length

some non-negative 
path length

26



Correctness

s

v*

y

vMin

x

found V - found

weightx,vMin

weightx,y

weightv*,y

weightv*,vMin

Dijkstra’s says that this is the best available path.

27

some non-negative 
path length

some non-negative 
path length

some non-negative 
path length



Correctness

s

v*

y

vMin

found V - found

weightv*,y

weightv*,vMin

How do we know that the path from 
v* to vMin is better than the path 

from v* to y?

Both include the path from s to v*, and Dijkstra’s 
Algorithm always picks the minimal path length. 28

some non-negative 
path length



Correctness

s

v*

y

vMin

found V - found

weightv*,y

weightv*,vMin

How do we know that the path from 
v* to y to vMin is not even better 
than the path from v* to vMin?

Dijkstra’s Algorithm only operates on graphs with non-negative edge weights. 
Thus, this new path must be greater than or equal to the (v*, vMin) edge. 29

some non-negative 
path length

some non-negative 
path length



Correctness

s

v* vMin

x

found V - found

weightx,vMin

weightv*,vMin

How do we know that the path from 
v* to vMin is better than the path 

from x to vMin?

Dijkstra’s Algorithm compares these two options and 
picks the minimal path length.

30

some non-negative 
path length

some non-negative 
path length



Correctness

s

v*

y

vMin

x

found V - found

weightx,y

weightv*,vMin

How do we know that the path from 
x to y to vMin is not even better than 

the path from v* to vMin?
Dijkstra’s Algorithm only operates on graphs with non-negative edge weights. Thus, 

this new path must be greater than or equal to the (v*, vMin) edge.31

some non-negative 
path length

some non-negative 
path length

some non-negative 
path length



s

v*

y

vMin

x

found V - found

weightx,vMin

weightx,y

weightv*,y

weightv*,vMin
10

20

5

14

Not taking the shortest edge. We are taking the shortest path!

15

8

32

some non-negative 
path length

some non-negative 
path length

some non-negative 
path length



s

v*

y

vMin

x

found V - found

weightx,vMin

weightx,y

weightv*,y

weightv*,vMin
20

20

15

3

Sometimes the the shortest edge is on the shortest path.

15

8

33

some non-negative 
path length

some non-negative 
path length

some non-negative 
path length



s

v*

y

vMin

x

found V - found

weightx,vMin

weightx,y

weightv*,y

weightv*,vMin

some non-negative 
path length

20

20

15

3

Why doesn’t Dijkstra’s work on graphs with negative edges?

15

8

-50

34

some non-negative 
path length

some non-negative 
path length



Correctness (summary)

• Given our assumption that we do not have negative edges

• And our inductive hypothesis that our path to v* is the shortest

• And our analysis of Dijkstra’s greedy criterion

• We have shown that

lengths[vMin] = lengths[v*] + weightv*,vMin is the best available path length

35



What is the 
running time?

FUNCTION Dijkstra(G, start_vertex)

found = {}

lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)

lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found

FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight

IF vOther_length < min_length

min_length = vOther_length

vMin = vOther

found.add(vMin)

lengths[vMin] = min_length

RETURN lengths

36



FUNCTION Dijkstra(G, start_vertex)

found = {}

lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)

lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found

FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight

IF vOther_length < min_length

min_length = vOther_length

vMin = vOther

found.add(vMin)

lengths[vMin] = min_length

RETURN lengths

How many times does the 
outer loop run?

How many times do the inner 
two loops run?

What is the 
running time?

O(n)

O(m)

37



FUNCTION Dijkstra(G, start_vertex)

found = {}

lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)

lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found

FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight

IF vOther_length < min_length

min_length = vOther_length

vMin = vOther

found.add(vMin)

lengths[vMin] = min_length

RETURN lengths

How many times does the 
outer loop run?

How many times do the inner 
two loops run?

What is the 
running time?

O(nm)

O(n)

O(m)

38


	Slide 1: Dijkstra’s Algorithm
	Slide 3
	Slide 4: Outline
	Slide 5: Extra Resources
	Slide 6: Dijkstra’s Algorithm
	Slide 7: Dijkstra’s Algorithm
	Slide 8: Dijkstra’s Algorithm
	Slide 9
	Slide 10: How did we do shortest path before?
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Exercise
	Slide 16: Dijkstra’s Algorithm with negative edges
	Slide 17: Dijkstra’s Algorithm with negative edges
	Slide 18: Dijkstra’s Algorithm with negative edges
	Slide 19: Dijkstra’s Algorithm
	Slide 20: Proof by Induction Cheat-sheet
	Slide 21: Correctness
	Slide 22: Correctness
	Slide 23
	Slide 24: Inductive Step
	Slide 25: Inductive Step
	Slide 26: Correctness
	Slide 27: Correctness
	Slide 28: Correctness
	Slide 29: Correctness
	Slide 30: Correctness
	Slide 31: Correctness
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Correctness (summary)
	Slide 36
	Slide 37
	Slide 38

