Breadth First Search

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

Discuss breadth first search for graphs

Exercises

- Continued from previous lecture slides
- Compute distance with Breadth-first search

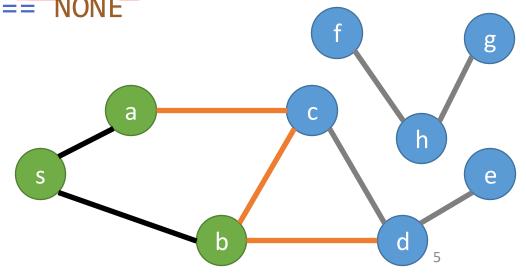
Extra Resources

- Introduction to Algorithms, 3rd, Chapter 22
- Algorithms Illuminated Part 2: Chapter 8

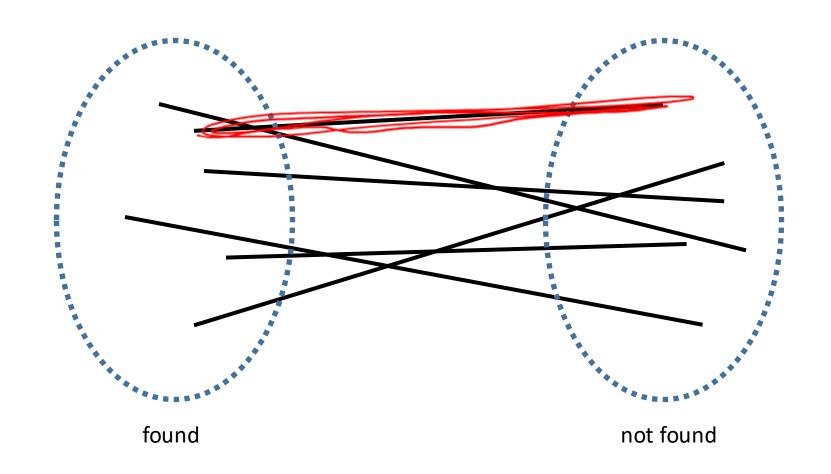
General Algorithm

```
FUNCTION Connectivity(G, start_vertex)
  found = {v: FALSE FOR v IN G.vertices}
  found[start_vertex] = TRUE
  LOOP
     (vFound, vNotFound) = (get_valid_edge(G.edges, found)
    BREAK
     ELSE
       found[vNotFound] = TRUE
  RETURN found
```

Find an edge where one vertex has been found and the other vertex has not been found.



How do we choose the <u>next</u> edge?



Two common (and well studied) options

Breadth-First Search

- Explore the graph in layers
- "Cautious" exploration
- Use a FIFO data structure (can you think of an example?)

Depth-First Search

- Explore recursively
- A more "aggressive" exploration (we backtrack if necessary)
- Use a LIFO data structure (or recursion)

```
FUNCTION BFS(G, start vertex)
  found = {v: FALSE FOR v IN G.vertices}
  found[start vertex] = TRUE
  visit queue = [start_vertex]
  WHILE visit queue.length != 0
     FOR vOther IN(G.edges[vFound])
        IF found[vOther] == FALSE
          found[vOther] = TRUE∠
          visit queue.add(vOther)

✓
```

```
FUNCTION Connectivity(G, start_vertex)
   found = {v: FALSE FOR v IN G.vertices}
  found[start vertex] = TRUE
   LO<sub>OP</sub>
      (vFound, vNotFound) =
         get_valid_edge(G.edges, found)
      IF vFound == NONE | vNotFound == NONE
         BREAK
      ELSE
         found[vNotFound] = TRUE
   RETURN found
```

RETURN found

$$vFound = S$$
 $VF = C$
 $VO = A$
 $VO = B$
 $VF = A$
 $VO = C$
 $VO = S$
 $VF = D$
 $VF = D$

SABCDE

Exercise questions 2 and 3

```
FUNCTION BFS(G, start_vertex)
   found = {v: FALSE FOR v IN G.vertices}
   found[start_vertex] = TRUE
   visit_queue = [start_vertex]
   WHILE visit_queue.length != 0
  vFound = visit_queue.pop()
      FOR vOther IN G.edges[vFound]
         IF found[vOther] == FALSE
            found[vOther] = TRUE
            visit_queue.add(vOther)
   RETURN found
```

Given a tie, visit edges are in alphabetical order

Running Time

What is the running time?

```
FUNCTION BFS(G, start_vertex)
  found = {v: FALSE FOR v IN G.vertices}
  found[start_vertex] = TRUE
  visit_queue = [start_vertex]
```


WHILE visit_queue.length != 0
 vFound = visit_queue.pop()
FOR vOther IN G.edges[vFound]
IF found[vOther] == FALSE
 found[vOther] = TRUE
 visit_queue.add(vOther)

How many times to we consider each edge?

turce

RETURN found

O(u) + O(u) = O(u+u)

Running Time

```
FUNCTION BFS(G, start_vertex)
  found = {v: FALSE FOR v IN G.vertices}
  found[start_vertex] = TRUE
  visit_queue = [start_vertex]
  WHILE visit_queue.length != 0
     vFound = visit_queue.pop()
     FOR vOther IN G.edges[vFound]
         IF found[vOther] == FALSE
            found[vOther] = TRUE
            visit queue.add(vOther)
  RETURN found
```

What is the running time?

How many times to we consider each edge?

$$T_{BFS}(n,m) = O(n_S + m_S)$$

where n_s and m_s are the nodes and edges **findable/connected** from/to the start vertex

Proof: BFS

Claim: BFS finds all nodes connected to the start node.

At the end of the BFS algorithm, v is marked found if there exists a path from s to v

 Note: this is just a special case of the general algorithm that we proved by contradiction

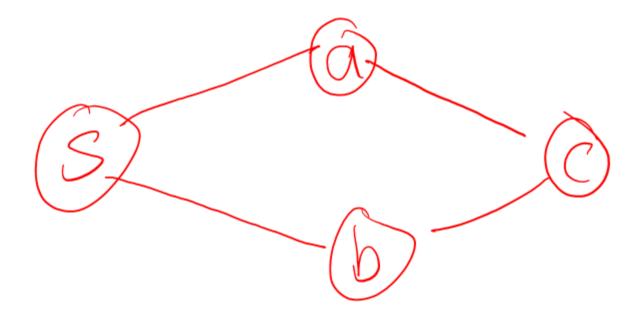
Provênce for a loop invariant

tomework grestion

Question

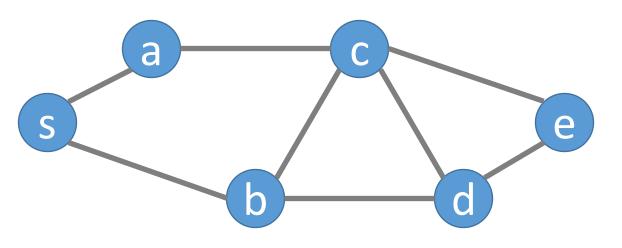
The Shortest Path Problem

 How can we determine the fewest number of hops between the start vertex and all other connected vertices?



BFS Exercise Question 1

How can we determine the fewest number of hops between the start vertex and all other connected vertices?



```
FUNCTION BFS(G, start_vertex)
   found = {v: FALSE FOR v IN G.vertices}
   found[start_vertex] = TRUE
  visit_queue = [start_vertex]
  WHILE visit_queue.length != 0
      vFound = visit_queue.pop()
      FOR vOther IN G.edges[vFound]
         IF found[vOther] == FALSE
            found[vOther] = TRUE
            visit_queue.add(v0ther)
   RETURN found
```

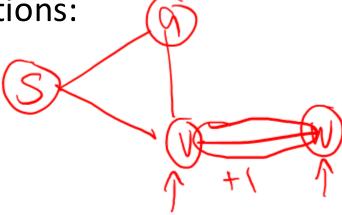
Given a tie, visit edges are in alphabetical order

The Shortest Path Problem

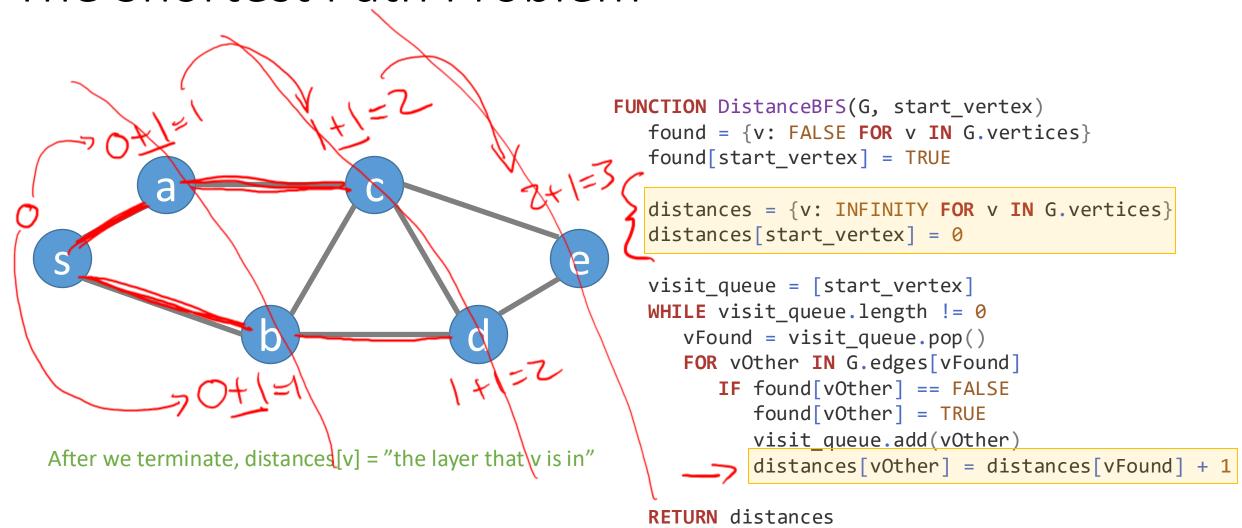
Determine the fewest number of hops between the start vertex and all other vertices

Same algorithm as before with the following additions:

- Initialize the distances[s] as 0
- Initialize all other distances to infinity
- When considering an edge (v, w)
 - If w is not found, then set dist(w) to dist(v) + 1



The Shortest Path Problem



Given a tie, visit edges are in alphabetical order

Connected Components

Let's only consider undirected graphs for now

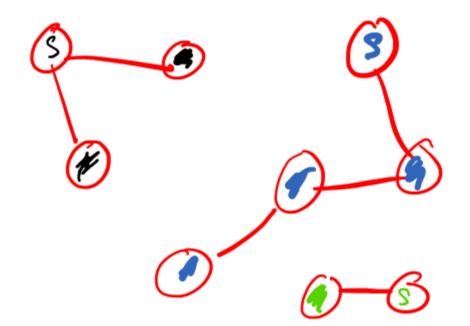
Let G = (V,E) be an undirected graph

Goal: compute all connected components in O(m + n)

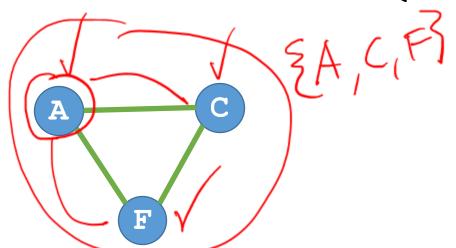
- A component is any group of vertices that can reach one another
- For example, if we are trying to see if a network has become disconnected

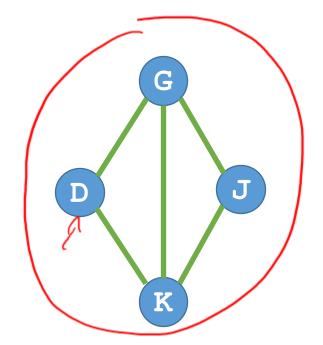
Exercise question 2:

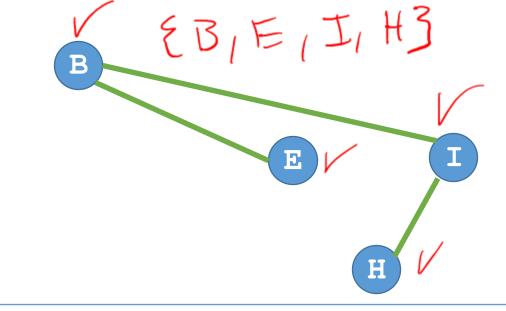
How would you do this using our BFS procedure from before?



BFS Exercise Question 2







```
FUNCTION FindComponents (G)
   components = []
   found = {v: FALSE FOR v IN G.vertices}
  FOR v IN G vertices
     IF NOT found[v]
         newly found = BFS(G, v)
         new component = {
            w FOR w, w is found IN newly found
            IF w is found
         component.append(new component)
         FOR w IN new component:
            found[w] = TRUE
                                        18
  RETURN components
```