Lower Bound on Comparison-Based Sorting

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

• Discuss a lower bound for the running time of all comparison-based sorting algorithms

<u>Exercise</u>

• Lower bound

Extra Resources

• Introduction to Algorithms, 3rd, Chapter 8

Comparison-Based Sorting

Claim: The worst-case, lower bound on comparison-based sorting is $\Omega(n \lg n)$

Comparison-based sorting methods:

- Merge sort, quicksort, heapsort, insertion sort, bubble sort, ...
- General purpose routines

Non-comparison-based sorting methods:

- Bucket sort, counting sort, radix sort, ...
- These methods look at the values (not just at the relative ordering)
- They assume something about the distribution of the data
- They can operate in linear time

Proof

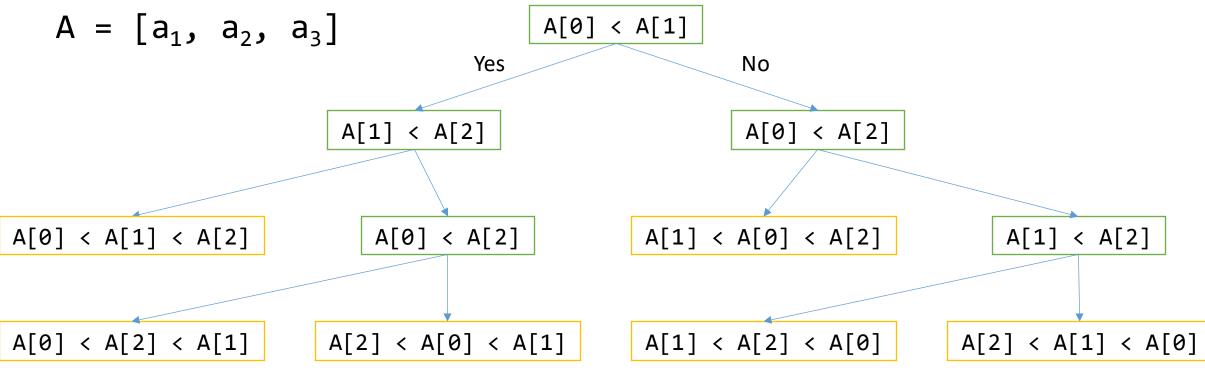
- Consider an array of the values 1... How many different orderings?
- The array has n! different orderings (permutations)
- We can only use the results of <u>comparisons</u> to reorder elements
- Suppose an algorithm makes k comparisons
- We don't know what k is just yet
- How many possible distinct comparisons sequences do we have?

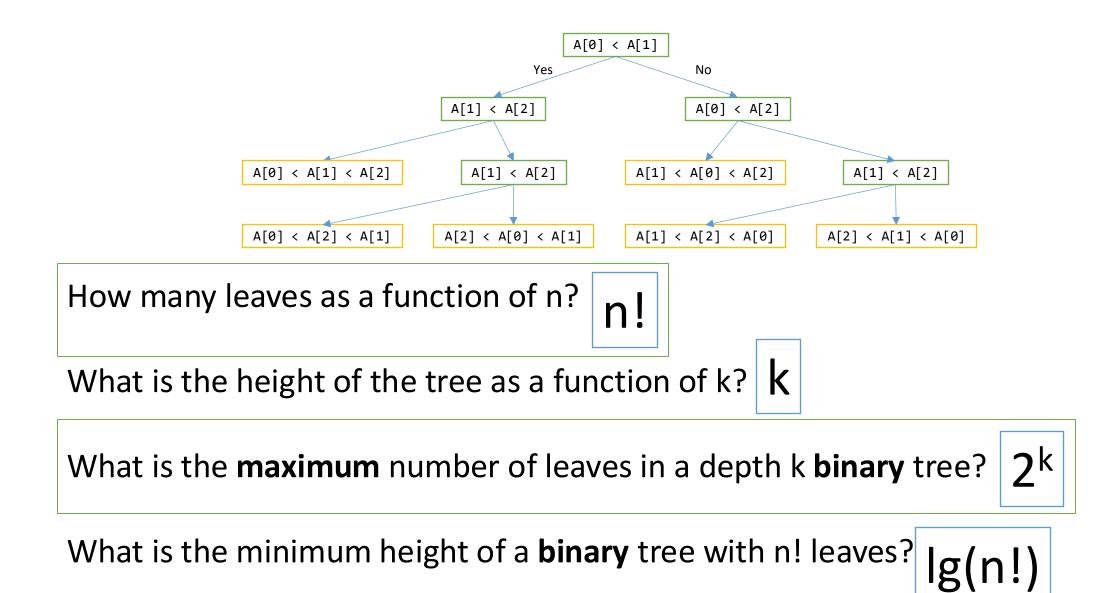
We need an equation based on k

- What is a reasonable upper bound on k?
- What is the lower bound on k?

Given each of the n! inputs and the k comparisons:

- We have 2^k distinct comparison sequences
- For each of the k comparison we can return value a or value b
- You can think of these comparisons as a decision tree





Let's find a bound on k

What is bigger?

- The number of leaves with n! numbers OR
- The maximum number of leaves for a tree of height k?

Let's find a bound on k

What is bigger?

- The number of leaves with n! numbers OR
- The maximum number of leaves for a tree of height k?

Might not have a "full" tree

Number of leaves with n numbers
$$n! \leq 2^k$$
 Maximum number of leaves with depth k (k Comparisons)
 $\ln(n!) \leq \ln(2^k)$
 $\ln(n!) \leq k \cdot \ln(2)$
 $\ln(n!) \leq k \cdot c_1$
Lower Bound! Number of comparisons k is at least...

Let's find a bound on k

Stirling's approximation: $\ln(n!) = n \cdot \ln(n) - n + O(\ln(n))$

 $n \cdot \ln(n) - n + O(\ln(n)) \le k \cdot c_1$ $n \cdot \ln(n) - n + O(\ln(n)) \le n \cdot \ln(n) + O(\ln(n)) \le k \cdot c_1$ $n \cdot \ln(n) + O(\ln(n)) \le k \cdot c_1$ $n \cdot \ln(n) + O(\ln(n)) \le n \cdot \ln(n) + c_2 n \ln(n) \le k \cdot c_1$ $c_3 n \ln(n) \le k \cdot c_1$ $\frac{c_3}{c_1}n\ln(n) \le k$ $c_4 n \ln(n) \le k$

 $k = \Omega(n \ln(n))$