Randomized (Linear-Time) Selection

https://cs.pomona.edu/classes/cs140/

Selection Problem

Input: A set of n numbers and an integer i, with $1 \le i \le n$

Output: The element that is larger than exactly i - 1 other elements

- Known as the ith order statistic or the ith smallest number
- The minimum element is the 1st order statistic (i = 1)
- The maximum element is the n^{th} order statistic (i = n)

What is "i" for the median? (an expression base on n)

- If n is even, then the medians are the n/2 and n/2 + 1 order statistics
- If n is odd, then the median is the (n + 1)/2 order statistic

Reduction

Find the *ith* smallest number in an array

• Recall: it takes linear time just to read an array

- What would be a O(n lg n) algorithm for this problem?
 - Sort
 - Return the element at index i 1

Selection Problem

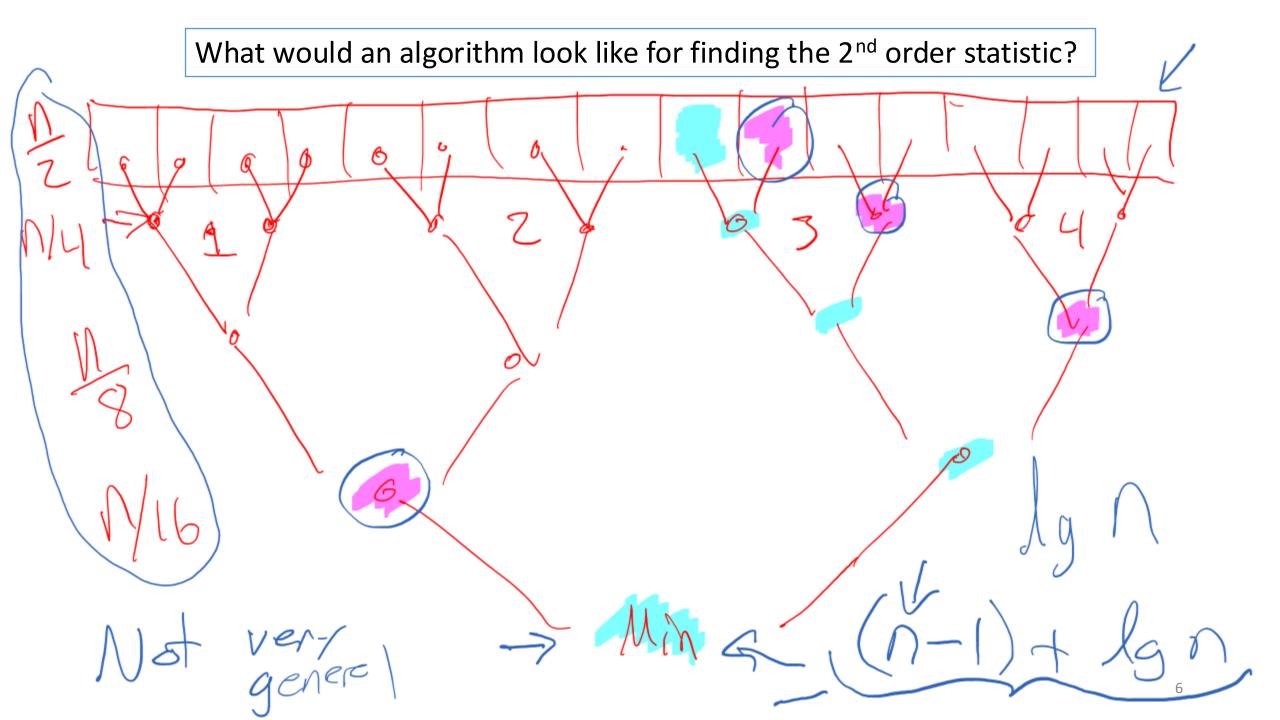
- Can we do better than O(n lg n)?
- To beat O(n lg n) we cannot sort the entire array
 - Note: comparison-based sorting cannot be done faster than O(n lg n)
 - (you'll prove this later)

- Do we even need to perform a comparison with all the elements?
 - Yes!
 - So we know that O(n) is our lower bound on the running time
 - What is the upper bound?

Finding the minimum (1st) and maximum (nth)

```
FUNCTION FindMinimum(array)
                                     FUNCTION FindMaximum(array)
   n = array.length
                                        n = array.length
   min val = array[0]
                                        max val = array[0]
   FOR val IN array[1 ...< n]
                                        FOR val IN array[1 ... n]
      IF val < min val</pre>
                                           IF val > max val
         min val = val
                                              max val = val
   RETURN min val
                                        RETURN max val
```

What would an algorithm look like for finding the 2nd order statistic?



General Algorithm

How do you find the ith order statistic in the more general case?

Randomized Selection (Quickselect)

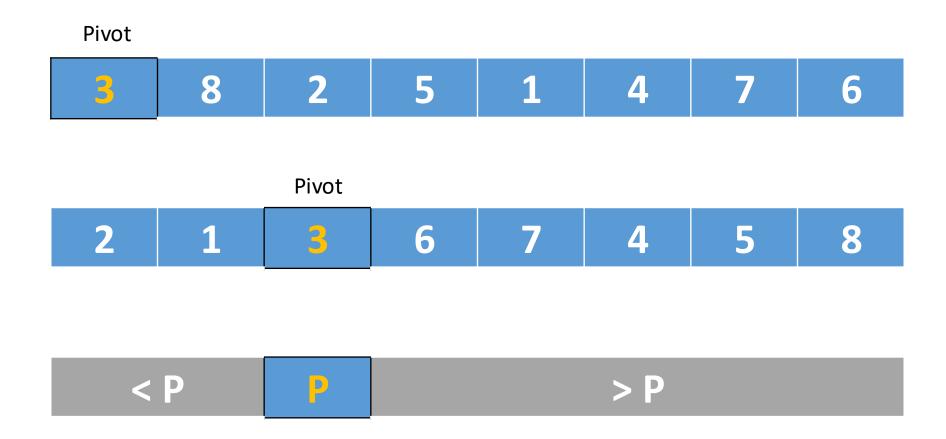
(Expected) linear-time complexity

Same as scanning through the list once

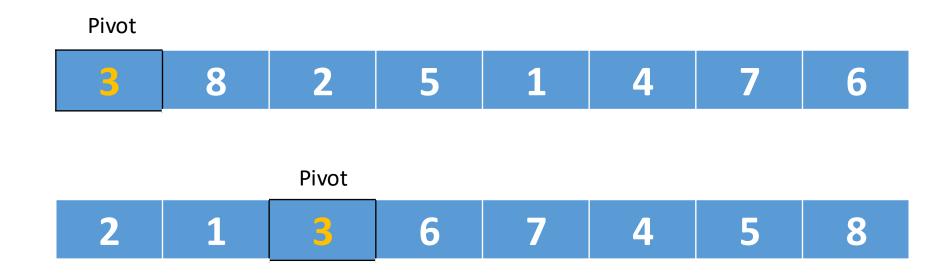
One linear algorithm for this problem is called Randomized Selection

We are going to start by modifying the only randomized algorithm that we we've seen so far: Quicksort

Key Component of Quicksort: Partitioning



Key Component of Quicksort: Partitioning



What if we are looking for the 5th order statistic?

- What is the fifth order statistic?
- Do we need to recursively look on both sides of the pivot?

Quicksort

How do we turn this into Quickselect?

```
FUNCTION QuickSort(array, left_index, right_index)
                                                        FUNCTION Partition(array, left_index, right_index)
  IF left_index ≥ right_index
                                                            pivot_value = array[left_index]
      RETURN
  MovePivotToLeft(left_index, right_index)
                                                           i = left_index + 1
                                                            FOR j IN [left_index + 1 ... right_index]
   pivot_index = Partition(array, left_index, right_index)
                                                              IF array[j] < pivot_value</pre>
                                                                 swap(array, i, j)
  QuickSort(array, left_index, pivot_index)
                                                                 i = i + 1
  QuickSort(array, pivot index + 1, right index)
                                                            swap(array, left index, i - 1)
                                                           RETURN i - 1
```

How do we turn this into Quickselect?

```
FUNCTION RSelect(array, left_index, right_index, ith)
   IF left index == right index
      RETURN array[left index]
  MovePivotToLeft(left index, right index)
   pivot index = Partition(array, left index, right index)
  IF ith == pivot index + 1
      RETURN array[pivot index]
  ELSE IF ith < pivot index + 1</pre>
      RETURN RSelect(array, left_index, pivot_index, ith)
  ELSE
      RETURN RSelect(array, pivot_index + 1, right_index, ith)
```

```
FUNCTION Partition(array, left_index, right_index)
   pivot value = array[left index]
   i = left_index + 1
   FOR j IN [left_index + 1 ... right_index]
      IF array[j] < pivot_value</pre>
         swap(array, i, j)
         i = i + 1
   swap(array, left index, i - 1)
   RETURN i - 1
```

```
FUNCTION RSelectIter(array, left index, right index, ith)
   LOOP
      IF left index == right index
         RETURN array[left index]
      MovePivotToLeft(left_index, right_index)
      pivot_index = Partition(array, left_index, right_index)
      IF ith == pivot index + 1
         RETURN array[pivot_index]
      ELSE IF ith < pivot_index + 1</pre>
         right_index = pivot_index
      ELSE
         left_index = pivot_index + 1
```

Iterative Version

- 1. Asymptotically, do you expect any differences?
- 2. Practically, which do you think has better performance? 13

Running time of Quickselect

- What is the worst possible running time?
 - What is the worst pivot choice?
- What is the best possible running time?

• You're more likely to finish the algorithm in linear time than in quadratic (worst-case) time.

Under normal operation, what is the best choice for a pivot?

Running time of Quickselect

- Under normal operation, what is the best choice for a pivot?
- What is the running time if we always deterministically pick the median?
- How would you calculate the running time if I told you that the algorithm always picked the median?

$$T(n) \le T\left(\frac{n}{2}\right) + O(n)$$
 \longrightarrow $O(n)$

Hope: that the choice of pivot is "good enough" "often enough"

Theorem:

for every input array, the average running time of Quickselect is O(n)

Where is all the work done?

```
FUNCTION RSelect(array, left index, right index, ith)
                                                            FUNCTION Partition(array, left_index, right_index)
  IF left index == right index
     RETURN array[left index]
                                                                pivot value = array[left index]
  MovePivotToLeft(left index, right index)
                                                               i = left index + 1
  pivot index = Partition(array, left index, right index)
                                                               FOR j IN [left_index + 1 ...
                                                                   IF array[j] < pivot_value</pre>
  IF ith == pivot index + 1
     RETURN array[pivot index]
                                                                      swap(array, i, j)
                                                                      i = i + 1
  ELSE IF ith < pivot index + 1</pre>
     RETURN RSelect(array, left_index, pivot_index, ith)
                                                                swap(array, left index, i - 1)
                                                               RETURN i - 1
  ELSE
     RETURN RSelect(array, pivot_index + 1, right_index, ith)
```

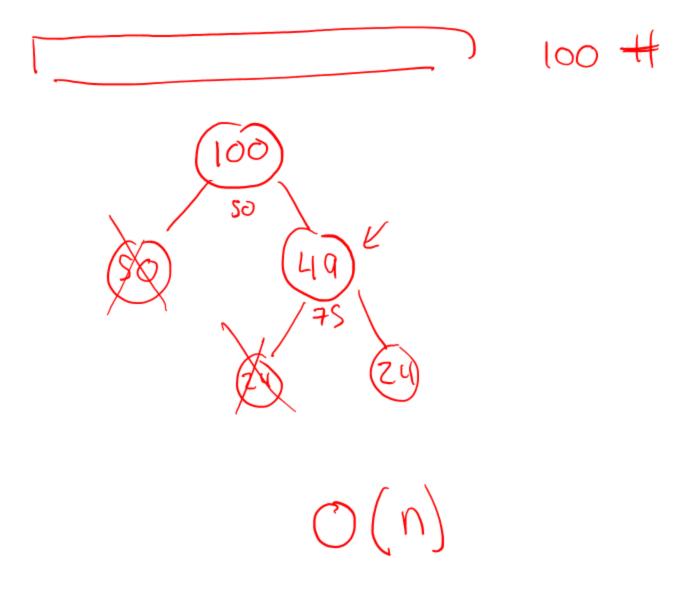
Hope: that the choice of pivot is "good enough" "often enough"

Theorem:

for every input array, the average running time of Quickselect is O(n)

All the work is done in partition and the total amount of work done in a <u>single</u> call to partition is $\leq cn$

not sorted Best Case



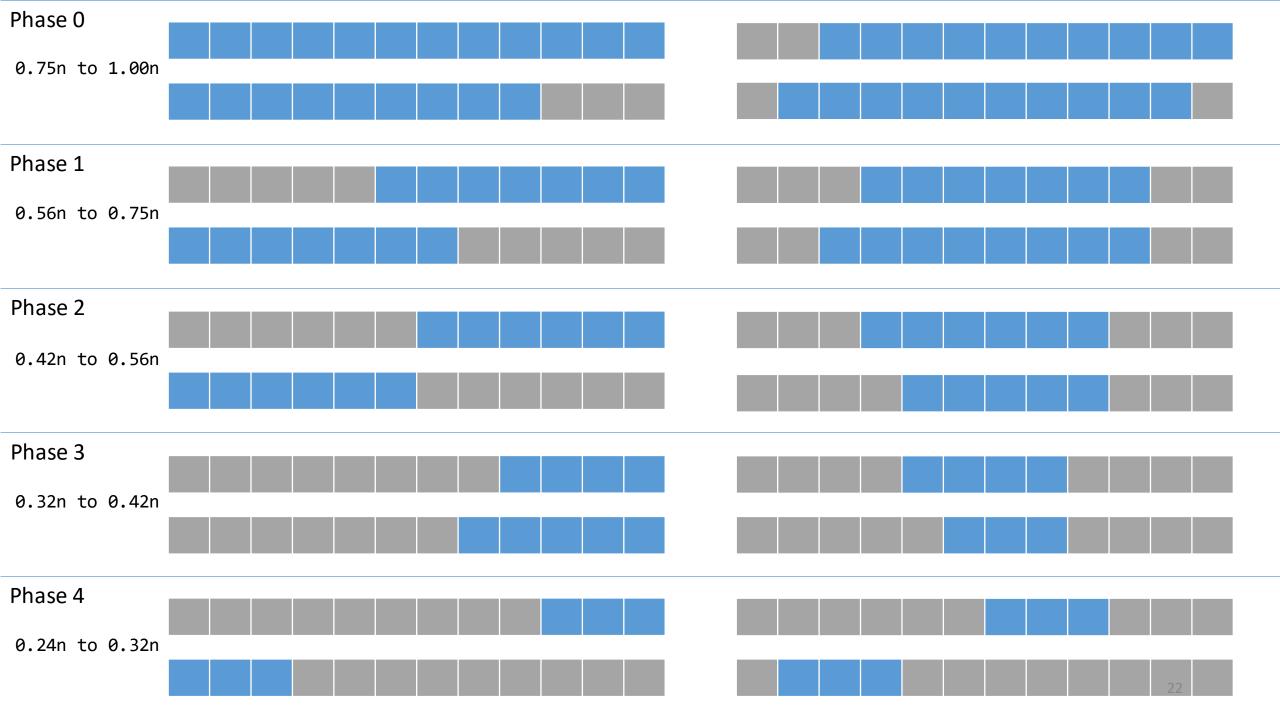
Notation for our proof

Quickselect is in *phase*; if the current subarray size is between

$$n \cdot \left(\frac{3}{4}\right)^{j+1} < (\text{right_index} - \text{left_index}) \le n \cdot \left(\frac{3}{4}\right)^{j}$$

- j = 0 : 0.75n to 1.00n
- j = 1 : 0.56n to 0.75n
- j = 2 : 0.42n to 0.56n
- j = 3 : 0.32n to 0.42n

- Multiple recursive calls can be in the same phase;
- Some phases can be skipped



Proof

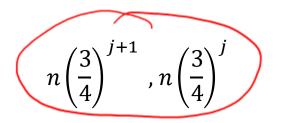
- Multiple recursive calls can be in the same phase;
- Some recursive calls can skip over the next phase;
- Let X_j denote the number of recursive calls made during phase,
 - Note: each recursive call in turn calls Partition
- What is the total running time of Quickselect?

$$T(n) \le \sum_{phase_j} X_j c \left(\frac{3}{4}\right)^j n$$

$$T(n) \le \sum_{phase_j} X_j c \left(\frac{3}{4}\right)^j n$$

- X_i : number of calls in $phase_i$ (not an indicator variable)
- c : constant for amount of work done by Partition
- (¾)^jn : <u>upper bound</u> on subarray size during *phase*_j
- $c(\frac{3}{4})^{j}n$: total amount of work during a <u>single call</u> in *phase*_j

Probability of leaving a phase?



 We leave phase_j when our pivot is within the 25-75% middle part of the subarray.

• So, if both the left and right sides contain less than 75% of elements

• What is the probability that we choose a pivot in (25 .. 75]?

Probability of leaving a phase?

- We have (at worst) a 50% chance to pick a "good" pivot element.
- Which means that we leave the current phase;
- So, we have reduced our problem to the coin flip problem:

$$E[X_j] \leq E[\# of coin flips to get heads]$$

Heads : good pivot

Tails : bad pivot

Coin Flips

 Let N = the number of flips until you get a heads (a geometric random variable)

$$E[N] = 1 + \frac{1}{2} E[N]$$

 $E[N] = 1 + \frac{1}{2} + \frac{1}{4} E[N]$
 $E[N] = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} E[N]$
 $E[N] = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} E[N]$

Need at least one flip. Then we have a 50% chance that it was tails and we need to flip again.

• • •

Coin Flips

 Let N = the number of flips until you get a heads (a geometric random variable)

$$E[N] = 1 + \frac{1}{2} E[N]$$

 $E[N] = 1 + \frac{1}{2} + \frac{1}{4} E[N]$
 $E[N] = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} E[N]$
 $E[N] = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} E[N]$
 $E[N] = 2$

Need at least one flip. Then we have a 50% chance that it was tails and we need to flip again.

Coin Flips

- Let N = the number of flips until you get a heads (a geometric random variable)
- Alternatively, what is the expected number of heads per coin flip?

$$E[\#of\ heads\ per\ flip] = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0 = \frac{1}{2}$$

$$Total_{heads} = E[\#of \ heads \ per \ flip] \cdot N$$

$$1 = \frac{N}{2} \rightarrow N=2$$

Back to the proof

$$T(n) \le \sum_{phase_j} X_j c \left(\frac{3}{4}\right)^J n$$

$$E[T(n)] \le cn \sum_{phase_j} E[X_j] \left(\frac{3}{4}\right)^J$$

Expected Value of T

$$E[T(n)] \le E\left[\sum_{phasej} X_j c \left(\frac{3}{4}\right)^j n\right]$$

$$E[T(n)] \le cn \sum_{phasej} E[X_j] \left(\frac{3}{4}\right)^j$$

Expected Value of T

$$E[T(n)] \le E\left[\sum_{phasej} X_j c \left(\frac{3}{4}\right)^j n\right]$$

$$E[T(n)] \le cn \sum_{phasej} E[X_j] \left(\frac{3}{4}\right)^J$$

Expected Value of T

We saw the same summation in our proof of the master theorem

Geometric sequence

$$\leq \frac{1}{1-r} = \frac{1}{1-\left(\frac{3}{4}\right)} = 4$$

$$E[T(n)] \le E\left[\sum_{phasej} X_j c \left(\frac{3}{4}\right)^j n\right]$$

$$E[T(n)] \le 2cn \sum_{phasej} \left(\frac{3}{4}\right)^{J}$$

Converges to 4

$$E[T(n)] \le 2cn4 = c_{combined}n = O(n)$$

Running time of Quickselect

$$E[T(n)] \le c_{combined}n = O(n)$$

Thus, the **average** running time of Quickselect T(n) <= O(n)