Master Method

https://cs.pomona.edu/classes/cs140/

Notes on checkpoint

- The checkpoint will be administered through gradescope
- You may bring a single, two-sided 8" by 11" note sheet (no restrictions)
- You must come to class to complete it
- You have these options (maybe more?)
 - Write answers directly on gradescope (bring your laptop)
 - Write answers on paper and upload to gradescope
 - Write answers on a tablet, export to image or PDF, and upload to gradescope
- You will have plenty of time, so you might want to bring something to read during the down time
- We will have two stages to the exam
 - An individual stage
 - And a group stage

Outline

Topics and Learning Objectives

- Learn about the master method for solving recurrences
- Understand how to draw general recursion trees

Exercise

• Applying the Master Method

Extra Resources

- Chapter 4 (sections 4-6) in CLRS
- Algorithms Illuminated: Part 1: 4Chapter 4
- <u>Master Method</u>

Master Method

• For "solving" recurrences

T(n) = the # of operations required to complete algorithm T(n) = 2T(n/2) + 7n

Base Case: $T(1) \leq base-case-work$

Recurrence: $T(n) \leq recursive-work + combine-work$

Recurrence Equation

- When an algorithm contains a recursive call to itself
- We usually specify its running time by a recurrence equation
- We also sometimes just call this a "recurrence"
- A recurrence equation describes the overall running time on a problem of size n in terms of the running time on smaller inputs (some fraction of n)

$$T(n) = 2 T(n/2) + O(n)$$

T(n/\aft_sorted = MergeSort(array[0 ..< n//2]) T(n/2)ght_sorted = MergeSort(array[n//2 ..< n])

O(n) ray_sorted = Merge(left_sorted, right_sorted)

O(1) ETURN array_sorted

Master Method

"Black Box" for solving recurrences

Assumes all subproblems are of equal size (most algorithms do this)

• The same amount of data is given to each recursive call

An algorithm that splits the subproblems into 1/3 and 2/3 (or an algorithm that splits data randomly) must be *solved* in a different manner. We'll look at other methods later

Master Method Recurrence Equation

$$T(n) \le a T\left(\frac{n}{b}\right) + O(n^d)$$

T(n) : total amount of operations

- a : recursive calls (# of subproblems), always >= 1
- b : fraction of input size (shrinkage), always > 1
- d : extra work needed to <u>combine</u>, always >= 0

What does <u>zero</u> mean for d?

Master Method Cases

$$T(n) \le \frac{a}{T} \left(\frac{n}{b} \right) + O(n^d)$$

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$

Master Method Cases

$$T(n) \le a T\left(\frac{n}{b}\right) + O(n^d)$$

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} & \text{Case 1} \\ O(n^{d}), & a < b^{d} & \text{Case 2} \\ O(n^{\log_{b} a}), & a > b^{d} & \text{Case 3} \end{cases}$$

Merge sort

$$T(n) \le a T\left(\frac{n}{b}\right) + O(n^d)$$

T(n) : total amount of operations

a : recursive calls (# of subproblems), always >= 1

- **b** : fraction of input size (shrinkage), always > 1
- d : extra work needed to <u>combine</u>, always >= 0

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$

Binary search

$$T(n) \le a T\left(\frac{n}{b}\right) + O(n^d)$$

T(n) : total amount of operations

a : recursive calls (# of subproblems), always >= 1

- **b** : fraction of input size (shrinkage), always > 1
- d : extra work needed to <u>combine</u>, always >= 0

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$

Closest pair

$$T(n) \le a T\left(\frac{n}{b}\right) + O(n^d)$$

T(n) : total amount of operations

a : recursive calls (# of subproblems), always >= 1

- **b** : fraction of input size (shrinkage), always > 1
- d : extra work needed to <u>combine</u>, always >= 0

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$

$T(n) \leq 2 T(n/2) + O(n^2)$

$$T(n) \leq a T\left(\frac{n}{b}\right) + O(n^d)$$

T(n) : total amount of operations

- a : recursive calls (# of subproblems), always >= 1
- **b** : fraction of input size (shrinkage), always > 1
- d : extra work needed to <u>combine</u>, always >= 0

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$

Integer Multiplication

Input: Two *n*-digit nonnegative integers, *x* and *y*. **Output**: The product $x \cdot y$ **Assumptions**: *n* is a power of 2

What is the time complexity using the "grade-school" algorithm.

123456789 x 987654321

Multiplication

	<pre>FUNCTION RecursiveIntMult(x, y) n = NumDigits(x)</pre>
Constar	
Consta	<pre>a, b = SplitIntIntoHalves(x) c, d = SplitIntIntoHalves(y)</pre>
	<pre>ac = RecursiveIntMult(a, c) ad = RecursiveIntMult(a, d) bc = RecursiveIntMult(b, c) bd = RecursiveIntMult(b, d)</pre>
Linear	RETURN 10 ⁿ * ac + 10 ^(n/2) * (ad + bc) + bd

What is the recurrence?

Multiplication

$T(n) \leq 4 T(n/2) + O(n)$

$$T(n) \leq a T\left(\frac{n}{b}\right) + O(n^d)$$

- T(n) : total amount of operations
 - a : recursive calls (# of subproblems), always >= 1
 - b : fraction of input size (shrinkage), always > 1
 - d : extra work needed to <u>combine</u>, always >= 0

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$

Karatsuba (guess the year) 1960!

```
FUNCTION RecursiveIntMult(x, y)
   n = NumDigits(x)
   IF n == 1, RETURN x * y
   a, b = SplitIntIntoHalves(x)
   c, d = SplitIntIntoHalves(y)
   ac = RecursiveIntMult(a, c)
   ad = RecursiveIntMult(a, d)
   bc = RecursiveIntMult(b, c)
   bd = RecursiveIntMult(b, d)
   RETURN 10<sup>n</sup> * ac
        + 10^{(n/2)} * (ad + bc)
        + bd
```

```
FUNCTION Karatsuba(x, y)
   n = NumDigits(x)
   IF n == 1, RETURN x * y
   a, b = SplitIntIntoHalves(x)
   c, d = SplitIntIntoHalves(y)
  p = a + b
  q = c + d
   ac = Karatsuba(a, c)
  bd = Karatsuba(b, d)
  pq = Karatsuba(p, q)
   adbc = pq - ac - bd
   RETURN 10<sup>n</sup> * ac
        + 10^{(n/2)} * adbc
        + bd
```

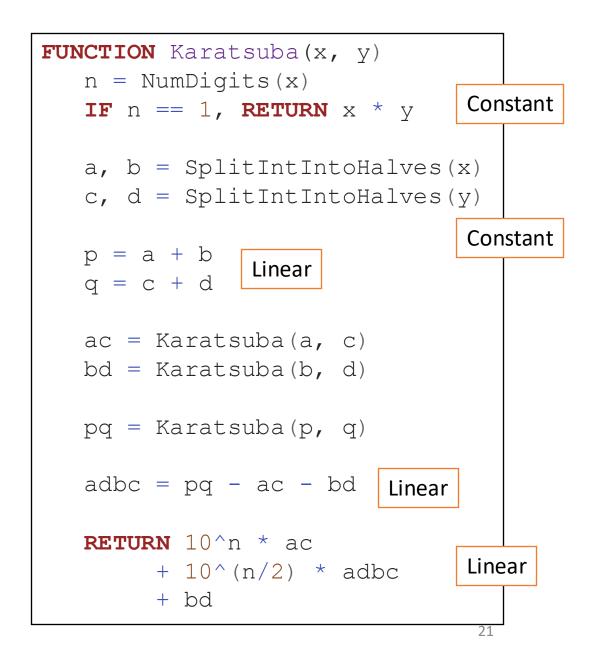
Karatsuba

```
FUNCTION RecursiveIntMult(x, y)
   n = NumDigits(x)
   IF n == 1, RETURN x * y
   a, b = SplitIntIntoHalves(x)
   c, d = SplitIntIntoHalves(y)
   ac = RecursiveIntMult(a, c)
   ad = RecursiveIntMult(a, d)
   bc = RecursiveIntMult(b, c)
  bd = RecursiveIntMult(b, d)
   RETURN 10<sup>n</sup> * ac
        + 10^{(n/2)} * (ad + bc)
        + bd
```

FUNCTION Karatsuba(x, y)	
n = NumDigits(x)	
IF n == 1, RETURN x * y	
<pre>a, b = SplitIntIntoHalves(x) c, d = SplitIntIntoHalves(y)</pre>	
p = a + b $q = c + d$	
ac = Karatsuba(a, c) bd = Karatsuba(b, d)	
pq = Karatsuba(p, q)	
adbc = pq - ac - bd	
RETURN 10 ⁿ * ac	
+ 10^(n/2) * adbc	
+ bd	

Karatsuba

What is the recurrence?



Karatsuba

$T(n) \leq 3 T(n/3) + O(n)$

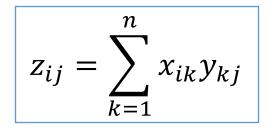
$$T(n) \leq a T\left(\frac{n}{b}\right) + O(n^d)$$

T(n) : total amount of operations

- a : recursive calls (# of subproblems), always >= 1
- **b** : fraction of input size (shrinkage), always > 1
- d : extra work needed to <u>combine</u>, always >= 0

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$

Iterative Matrix Multiplication



- **1.** FUNCTION IMM(X, Y)
- 2. Z = create_new_matrix(X.size, X.size)

3.

- 4. **FOR** i **IN** [0 ..< X.size]
- 5. **FOR** j **IN** [0 ..< X.size]
- 6. **FOR** k **IN** [0 .. < X.size]
- 7. Z[i][j] += X[i][k] * Y[k][j]
- 8.
- 9. **RETURN** Z

What are "a", "b", and "d"?

Recursive Matrix Multiplication

- **1. FUNCTION** RMM(X, Y)
- 2. **IF** X.size == 1
- 3. **RETURN** X * Y
- 4.
- 5. Z = create_new_matrix(X.size, X.size)
- 6.
- 7. Z(1,1) = RMM(X(1,1), Y(1,1)) + RMM(X(1,2), Y(2,1)) # Upper left
- 8. Z(1,2) = RMM(X(1,1), Y(1,2)) + RMM(X(1,2), Y(2,2)) # Upper right
- 9. Z(2,1) = RMM(X(2,1), Y(1,1)) + RMM(X(2,2), Y(2,1)) # Lower left
- 10. Z(2,2) = RMM(X(2,1), Y(1,2)) + RMM(X(2,2), Y(2,2)) # Lower right
- 11.
- 12. **RETURN** Z

Quadratic

n/2 →

 Z_{21}

n/2

Z₁₂

Z₂₂

Element-wise addition of matrices

<u>k n/2 →</u>

Y₁₁

Y₂₁

n/2

X⊥

Y₁₂

Y₂₂

X

 X_{12}

X₂₂

What are "a", "b", and "d"?

<u>|← n/2 →</u>|

X₁₁

 X_{21}

n/2

Matrix Multiplication

Recursive matrix multiplication

$$T(n) \le a T\left(\frac{n}{b}\right) + O(n^d)$$

- T(n) : total amount of operations
 - a : recursive calls (# of subproblems), always >= 1
 - b : fraction of input size (shrinkage), always > 1
 - d : extra work needed to <u>combine</u>, always >= 0

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$

Strassen's Matrix Multiplication

Quadratic

- **1. FUNCTION** SMM(X, Y)
- 2. **IF** X.size == 1
- 3. **RETURN** X * Y
- 4.
- 5. PA = SMM(X(1,1), Y(1,2) Y(2,2))
- 6. PB = SMM(X(1,1) + X(1,2), Y(2,2))
- 7. PC = SMM(X(2,1) + X(2,2), Y(1,1))
- 8. PD = SMM(X(2,2), Y(2,1) Y(1,1))
- 9. PE = SMM(X(1,1) + X(2,2), Y(1,1) + Y(2,2))
- 10. PF = SMM(X(1,2) X(2,2), Y(2,1) + Y(2,2))
- 11. PG = SMM(X(1,1) X(2,1), Y(1,1) + Y(1,2))

- 12. Z(1,1) = PE + PD PB + PF
- 13. Z(1,2) = PA + PB
- 14. Z(2,1) = PC + PD
- 15. Z(2,2) = PA + PE PC PG
- 16.
- 17. **RETURN** Z

What are "a", "b", and "d"?

Strassen's matrix multiplication T(n) \leq 7 T(n/2) + O(n²)

$$T(n) \leq a T\left(\frac{n}{b}\right) + O(n^d)$$

T(n) : total amount of operations

- a : recursive calls (# of subproblems), always >= 1
- b : fraction of input size (shrinkage), always > 1
- d : extra work needed to <u>combine</u>, always >= 0

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$

Master Method Proof

Does the Master Method actually work?

Assume

- T(1) = O(1) (this is our base-case)
- $T(n) \leq a T(n/b) + cn^d$
- n is a power of b (not necessary, but makes the math easier)
- How did we analyze the running time of merge sort?

Generalizing the Recursion Tree Analysis

For merge sort

- What was the # number of subproblems for a given level L?
- What was the size of each of the subproblems at level L?
- How many total levels were there?

Merge Sort Exercise

1.How many sub-problems are there at level 'L'? (Note: the top level is 'Level 0', the second level is 'Level 1', and the bottom level is 'Level log₂(n)')

Answer: 2^L

2.How many elements are there for a given sub-problem found in level 'L'?

Answer: n/2^L

3.How many computations are performed at a given level? (Note the cost of a 'merge' operation was 21m)

Answer: $2^{L} 21(n/2^{L}) \rightarrow 21n$

4. What is the total computational cost of merge sort? Answer: $21n (log_2(n) + 1)$

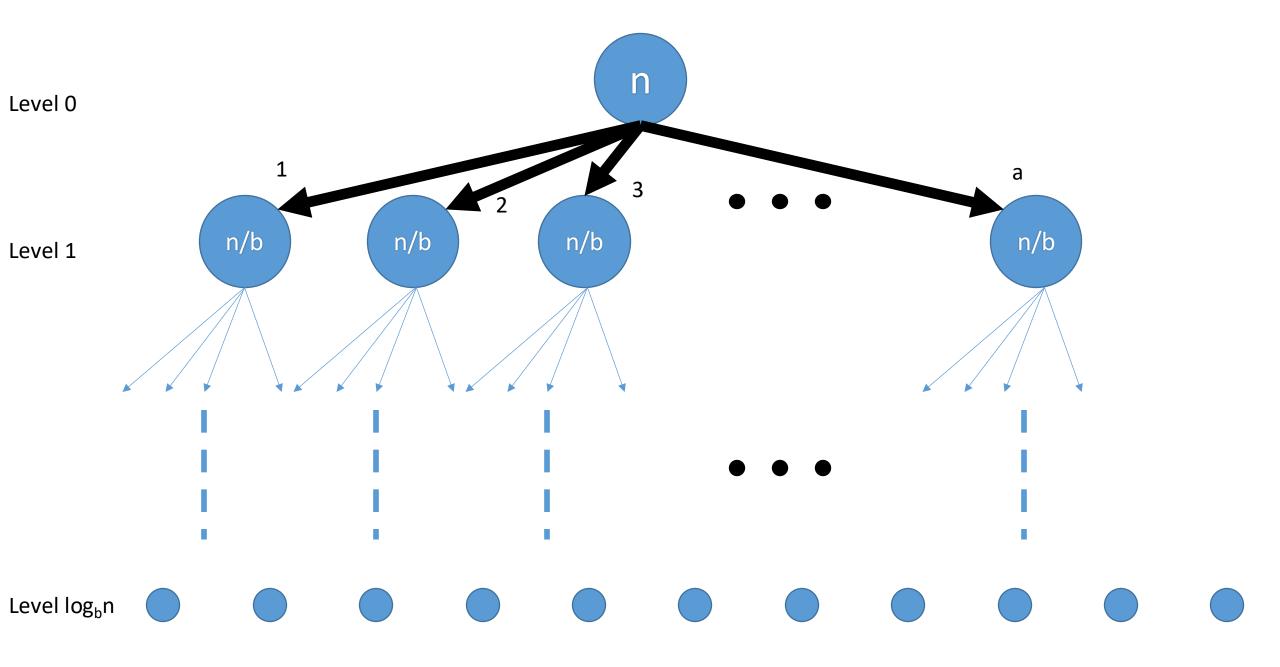
Generalizing the Recursion Tree Analysis

For merge sort

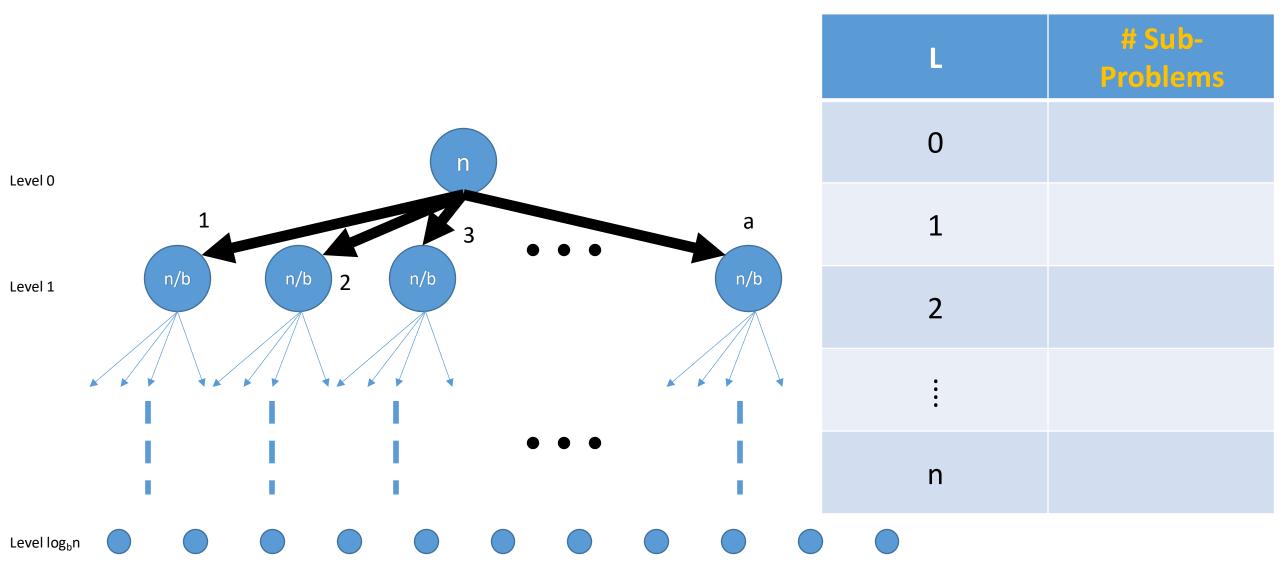
- What was the # number of subproblems for a given level L?
- What was the size of each of the subproblems at level L?
- How many total levels were there?

In the general case

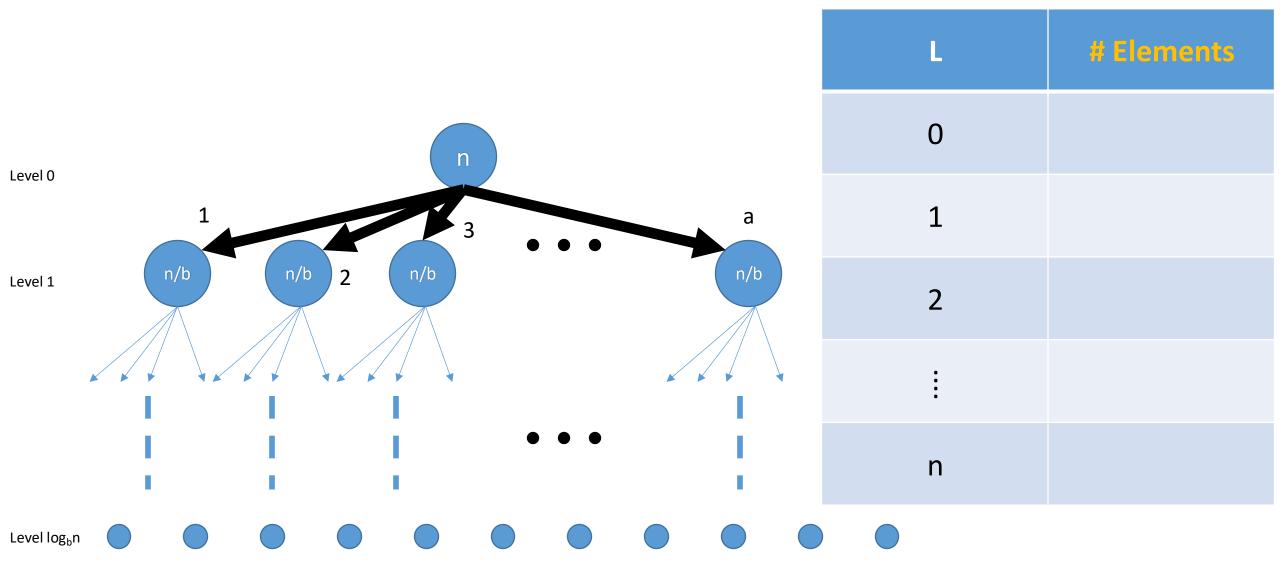
- What is the # number of subproblems for a given level L?
- What is the size of each of the subproblems at level L?
- How many total levels are there?



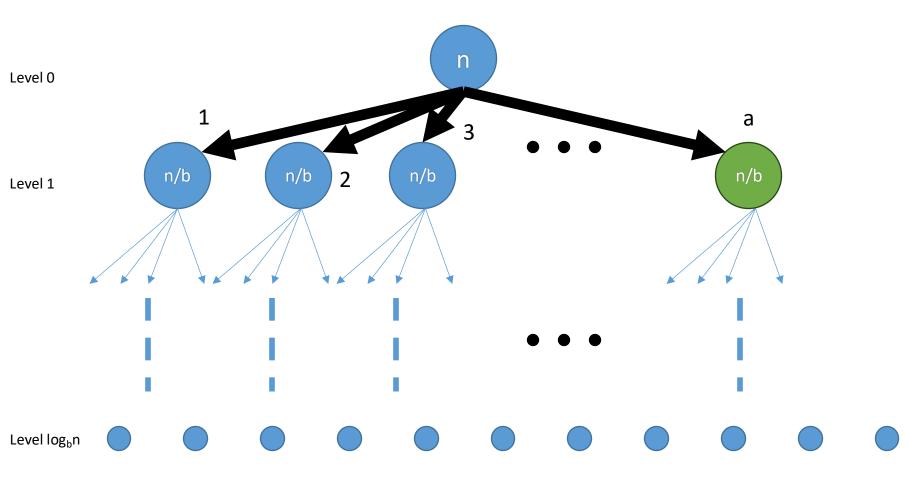
How many sub-problems at level L?



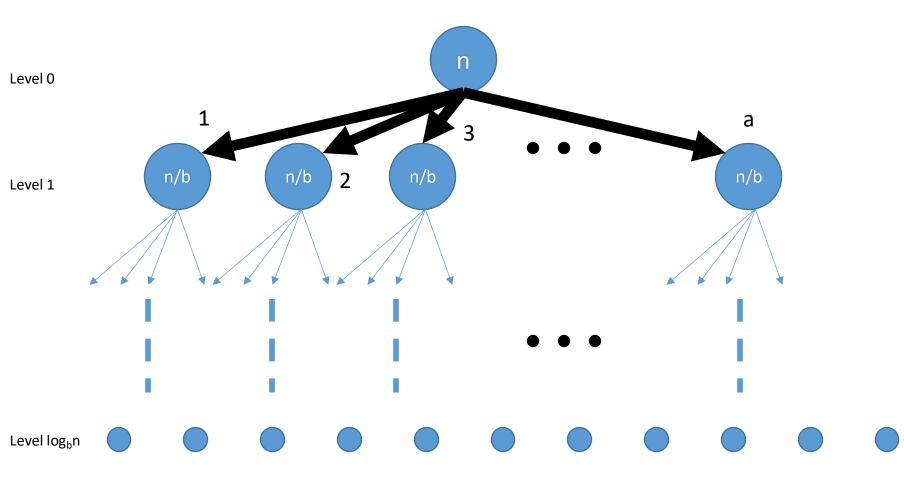
How many elements for each problem at level L?



How much work is done outside of recursion?



What is the total work done at level L?



What is the total work done at level L?

Work at (any) Level L

$$a^L c (n/b^L)^d$$

What is the total work done at level L?

Work at (any) Level L

$$a^L c (n/b^L)^d$$

Rewrite to group together terms dependent on level $cn^d (a/b^d)^L$

What is the total work done at level L?

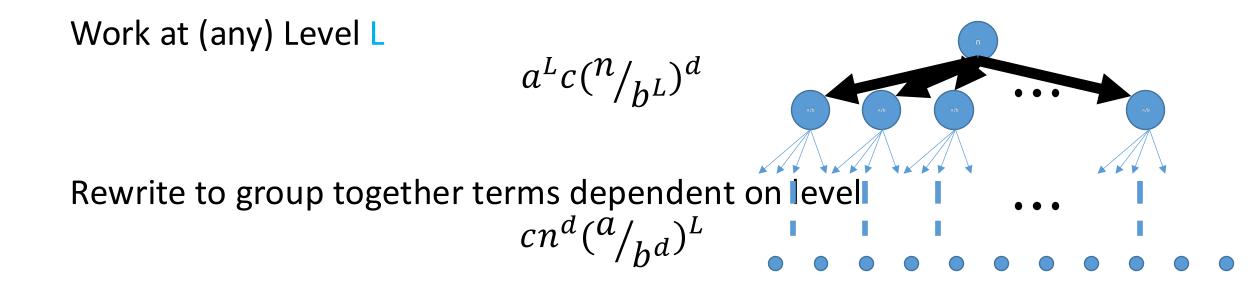
Work at (any) Level L

$$a^L c (n/b^L)^d$$

Rewrite to group together terms dependent on level $cn^d (a/b^d)^L$

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$

What is the total work done for the tree?

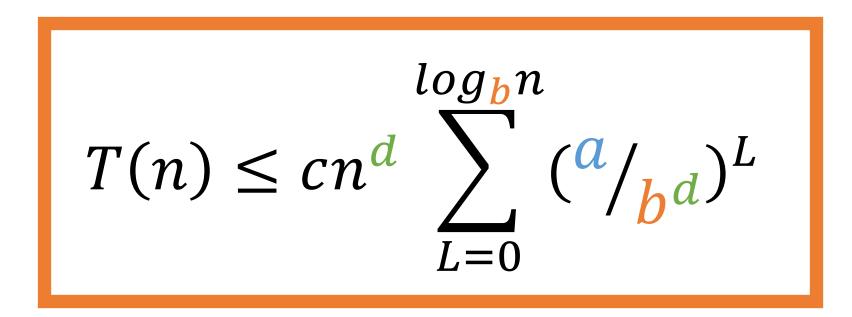


Work done for the entire tree

$$T(n) \le cn^d \sum_{L=0}^{\log_b n} (a/b^d)^L$$

Work done by a recursive algorithm*

*With an equal number of elements in each subproblem.



Let's look at the cases again

What happens when

 $a = b^d$: work stays roughly the same at each level $O(n^d \lg n)$ O(work at each level * number of levels) $a < b^d$: work goes down at each level $O(n^d)$ O(work done at the root) $a > h^d$: work goes up at each level $O(n^{\log_b a})$ O(work done at the leaves)

Review

- We have three difference cases of trees
 - 1. Work is similar at each level
 - 2. Work decreases at each level
 - 3. Work increases at each level
- These tree lead to our three cases for the Master Method
- What really matters is the ratio between a and b^d

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} & \text{Case 1} \\ O(n^{d}), & a < b^{d} & \text{Case 2} \\ O(n^{\log_{b} a}), & a > b^{d} & \text{Case 3} \end{cases}$$

From where do we get the cases?

a vs b^d?

A few helpers

$$\sum_{i=0}^{k} 1 = k+1$$

$$\sum_{i=0}^{\infty} r^{i} = \frac{1}{1-r} \text{ when } r < 1$$

$$\sum_{i=0}^{k} r^{i} = \frac{r^{k+1}-1}{r-1} \text{ when } r > 1$$

 $\log_a(n) = \frac{\log_2(n)}{\log_2(a)} = c\log_2(n) = O(\log_2(n)) \text{ for all values of } a \ge 1$

 $\sum_{i=0}^{k} 1 = k+1$

$$T(n) \leq cn^{d} \sum_{L=0}^{\log_{b} n} {a / b^{d}}^{L} \qquad 1. \ a = b^{d}$$

$$cn^{d} \sum_{L=0}^{\log_{b} n} {(1)^{L}} \qquad 2. \ \sum_{i=0}^{k} 1 = cn^{d} (\log_{b} n + 1)$$

Claim: $T(n) = O(n^d \lg n)$

$cn^d(\log_b n + 1) = O(n^d \lg n)$

Master Method

$$T(n) \le a T\left(\frac{n}{b}\right) + O(n^d)$$

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$

$$T(n) \le cn^d \sum_{L=0}^{\log_b n} (a_{bd})^L$$

 $cn^d \sum_{L=0}^{\log_b n} (a/b^d)^L$

1.
$$a < b^d$$

2.
$$\sum_{i=0}^{k} r^{i} = \frac{r^{k+1}-1}{r-1}$$

$$cn^{d} \frac{{\binom{a}{b^{d}}}^{\log_{b} n+1}-1}{{\binom{a}{b^{d}}}-1}$$

3. Multiply top and bottom by -1

$$cn^{d} \frac{1 - {\binom{a}{b^{d}}}^{\log_{b} n+1}}{1 - {\binom{a}{b^{d}}}}$$

$$T(n) \le cn^d \sum_{L=0}^{\log_b n} (a/b^d)^L$$

 $cn^d \sum_{L=0}^{\log_b n} (a/b^d)^L$

$$cn^{d} \frac{{\binom{a}{b^{d}}}^{\log_{b} n+1}-1}{{\binom{a}{b^{d}}}-1}$$

$$cn^{d} \frac{1 - (a_{bd})^{\log_{b} n+1}}{1 - (a_{bd})}$$

1.
$$a < b^d$$

2.
$$\sum_{i=0}^{k} r^{i} = \frac{r^{k+1}-1}{r-1}$$

3. Multiply top and bottom by -1

4. We can remove the complex term from the numerator and keep the original inequality

What can we say about this term?

$$T(n) \leq cn^{d} \frac{1}{1 - \binom{a}{b^{d}}}$$
$$cn^{d} c_{2}$$

 a_{hd} is constant with respect to n

Claim: $T(n) = O(n^d)$

$$cn^d c_2 = O(n^d)$$

Master Method

$$T(n) \le a T\left(\frac{n}{b}\right) + O(n^d)$$

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$

$$T(n) \leq cn^{d} \sum_{L=0}^{\log_{b} n} (a/b^{d})^{L}$$
 1. (

$$cn^d \sum_{L=0}^{\log_b n} (a/b^d)^L$$

1.
$$a > b^d$$

2. Last term of summation is

asymptotically largest:

 $\left(\frac{a}{b^d}\right)^{\log_b n}$

$$T(n) \leq cn^d \sum_{L=0}^{\log_b n} (a/b^d)^L \qquad 1.$$

 $cn^d \sum_{L=0}^{\log_b n} (a/b^d)^L$

 $cn^d (a/b^d)^{\log_b n}$

$$= O(cn^d \left(\frac{a}{b^d}\right)^{\log_b n})$$

1.
$$a > b^d$$

2. Last term of summation is

asymptotically largest:

 $\left(\frac{a}{b^d}\right)^{\log_b n}$

$$T(n) \le cn^d \sum_{L=0}^{\log_b n} (a/b^d)^L$$

 $cn^d \sum_{L=0}^{\log_b n} (a/b^d)^L$

 $cn^{d} (a/b^{d})^{\log_{b} n}$

1. $a > b^d$

2. Last term of summation is

asymptotically largest:

 $\left(\frac{a}{b^d}\right)^{\log_b n}$

$$T(n) \leq cn^{d} \sum_{L=0}^{\log_{b} n} (a_{bd})^{L}$$

 $cn^d \sum_{L=0}^{\log_b n} (a/b^d)^L$

 $cn^d (a/b^d)^{\log_b n}$

 $Ca^{\log_b n}$

Claim: $T(n) = O(n^{\log_{b} a})$

1.
$$a > b^d$$

- Last term of summation is asymptotically largest:
 - $\binom{a}{b^d}^{\log_b n}$
- 3. Distribute the exponent and simplify

$$ca^{\log_b n} = O(n^{\log_b a})$$

Master Method Summary

- 1. We analyzed a generalized recursion tree
- 2. Counted the amount of work done at each level
- 3. Counted the amount of work done by the tree
- 4. Found that we have three different types of trees
 - 1. Same rate throughout (case 1: a = b^d)
 - 2. Root dominates (case 2: a < b^d)
 - 3. Leaves dominate (case 3: a > b^d)
- 5. Saw that these trees relate to the difference master method cases

$$T(n) \le a T\left(\frac{n}{b}\right) + O(n^d)$$

T(n) : total amount of operations

- a : recursive calls (# of subproblems), always >= 1
- b : fraction of input size (shrinkage), always > 1
- d : extra work needed to <u>combine</u>, always >= 0

$$T(n) = \begin{cases} O(n^{d} \lg n), & a = b^{d} \\ O(n^{d}), & a < b^{d} \\ O(n^{\log_{b} a}), & a > b^{d} \end{cases}$$