
Closest Pair Algorithm
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

• Learn more about Divide and Conquer paradigm

• Learn about the closest-pair problem and its O(n lg n) algorithm
• Gain experience analyzing the run time of algorithms

• Gain experience proving the correctness of algorithms

Exercise

• Closest Pair

5

Extra Resources

• Algorithms Illuminated: Part 1: Chapter 3

6

Closest Pair Problem

• Input: P, a set of n points that lie in a (two-dimensional) plane

• Output: a pair of points (p, q) that are the “closest”
• Distance is measured using Euclidean distance:

d(p, q) = sqrt((px - qx)
2 + (py - qy)

2)

• Assumptions: None

8

Closest Pair Problem

• What is the brute force method for this search?

• What is the asymptotic running time of the brute force method?

Can we do better
than O(n2)?

9

One-dimensional closest pair

How would you find the closest two points?
• Sort by position : O(n lg n)
• Return the closest two using a linear scan : O(n)
• Total time : O(n lg n) + O(n) = O(n lg n)

Any problems using this approach for the two-dimensional case?
• Sorting does not generalize to higher dimensions!
• How do you sort the points?

p6 p4 p1 p3 p5 p7 p2

p1 p2 p3 p4 p5 p6 p7Input

p6 p4 p1 p3 p5 p7 p2

10

y

x

1. Which two are closest
on the y-axis?

11

y

x

1. Which two are closest
on the y-axis?

12

y

x

1. Which two are closest
on the y-axis?

13

y

x

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

14

y

x

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

15

y

x

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

3. Which two are closest?

16

y

x

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

3. Which two are closest?

17

Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
1. Sort by x-coordinate

2. Sort other by y-coordinate
O(n lg n)

18

Now we know we can’t do better than O(n lg n)

P : [p0(1,10), p1(2,8), p2(7,3), p3(5,7), p4(8,4), p5(3,5), p6(10,9), p7(9,1)]

Px : [p0(1,10), p1(2,8), p5(3,5), p3(5,7), p2(7,3), p4(8,4), p7(9,1), p6(10,9)]

Py : [p7(9,1), p2(7,3), p4(8,4), p5(3,5), p3(5,7), p1(2,8), p6(10,9), p0(1,10)]

Sorted by x coordinate

Sorted by y coordinate

19

Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
1. Sort by x-coordinate

2. Sort other by y-coordinate

• Can we still end up with a O(n lg n) algorithm for finding the closest pair?

• Does the closeness of two points on one axis matter?

O(n lg n)

20

1. FUNCTION FindClosestPair(points)
2. points_x = copy_and_sort_by_x(points)
3. points_y = copy_and_sort_by_y(points)
4. RETURN ClosestPair(points_x, points_y)

21

Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
1. Sort by x-coordinate

2. Sort other by y-coordinate

• Can we still end up with a O(n lg n) algorithm for finding the closest pair?

• Does the closeness of two points on one axis matter?

2. Apply the Divide-and-Conquer method

O(n lg n)

22

Divide-and-Conquer

1. DIVIDE into smaller subproblems

2. CONQUER the subproblems via recursive calls

3. COMBINE solutions from the subproblems

• How would you divide the problems?

23

y

x

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

3. Which two are closest?

4. How would you divide
the search space?

24

y

x

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

3. Which two are closest?

4. How would you divide
the search space?

This is the median x-value
This is not the average x-value

25

1. FUNCTION ClosestPair(px, py)
2. n = px.length
3. # What is the base case?
4. IF n == 2
5. RETURN px[0], px[1], dist(px[0], px[1])
6.
7.
8.
9. # What are the recursive cases?
10. pl, ql, dl = ClosestPair(left_px, left_py)
11.
12.
13.
14. pr, qr, dr = ClosestPair(right_px, right_py)

How do we create these arrays?

26

1. FUNCTION FindClosestPair(points)
2. points_x = copy_and_sort_by_x(points)
3. points_y = copy_and_sort_by_y(points)
4. RETURN ClosestPair(points_x, points_y)

P : [p0(1,10), p1(2,8), p2(7,3), p3(5,7), p4(8,4), p5(3,5), p6(10,9), p7(9,1)]

Px : [p0(1,10), p1(2,8), p5(3,5), p3(5,7), p2(7,3), p4(8,4), p7(9,1), p6(10,9)]

Py : [p7(9,1), p2(7,3), p4(8,4), p5(3,5), p3(5,7), p1(2,8), p6(10,9), p0(1,10)]

Sorted by x coordinate

Sorted by y coordinate

1. How do we create left_px?
2. How do we create right_px?
3. How do we create left_py?
4. How do we create right_py?

left_px right_px

left_py right_py

27

1. FUNCTION ClosestPair(px, py)
2. n = px.length
3. IF n == 2
4. RETURN px[0], px[1], dist(px[0], px[1])
5.
6. left_px = px[0 ..< n//2]
7. left_py = [p FOR p IN py IF p.x < px[n//2].x]
8. pl, ql, dl = ClosestPair(left_px, left_py)
9.
10. right_px = px[n//2 ..< n]
11. right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
12. pr, qr, dr = ClosestPair(right_px, right_py)

Median x value

28

What is the running time of these operations?

Any problems
with our current

approach?

29

1. FUNCTION ClosestPair(px, py)
2. n = px.length
3. IF n == 2
4. RETURN px[0], px[1], dist(px[0], px[1])
5.
6. left_px = px[0 ..< n//2]
7. left_py = [p FOR p IN py IF p.x < px[n//2].x]
8. pl, ql, dl = ClosestPair(left_px, left_py)
9.
10. right_px = px[n//2 ..< n]
11. right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
12. pr, qr, dr = ClosestPair(right_px, right_py)
13.
14. d = min(dl, dr)
15. ps, qs, ds = ClosestSplitPair(px, py, d)
16.
17. RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)

What time complexity does this
process need such that the overall

algorithm runs in O(n lg n)?
Hint: think about Merge Sort.

30

Exercise Question 1

Merge Sort and It’s Recurrence

32

FUNCTION RecursiveFunction(some_input)
IF base_case:

Usually O(1)
RETURN base_case_work(some_input)

Two recursive calls, each with half the data
one = RecursiveFunction(some_input.first_half)
two = RecursiveFunction(some_input.second_half)

Combine results from recursive calls (usually O(n))
one_and_two = Combine(one, two)

 RETURN one_and_two

33

1. FUNCTION ClosestPair(px, py)
2. n = px.length
3. IF n == 2
4. RETURN px[0], px[1], dist(px[0], px[1])
5.
6. left_px = px[0 ..< n//2]
7. left_py = [p FOR p IN py IF p.x < px[n//2].x]
8. pl, ql, dl = ClosestPair(left_px, left_py)
9.
10. right_px = px[n//2 ..< n]
11. right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
12. pr, qr, dr = ClosestPair(right_px, right_py)
13.
14. d = min(dl, dr)
15. ps, qs, ds = ClosestSplitPair(px, py, d)
16.
17. RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)

How do we find the
closest pair that splits the

two sides?

34

Key Idea

• In ClosestSplitPair we only need to check for pairs that are closer
than those found in the recursive calls to ClosestPair

• This is easier (faster) than trying to find the closest split pair without
any extra information!

d = min[d(pl, ql), d(pr, qr)]

35

FUNCTION ClosestSplitPair(px, py, d)
n = px.length
x_median = px[n//2].x
middle_py = [p FOR p IN py IF x_median - d < p.x < x_median + d]

closest_d = INFINITY, closest_p = closest_q = NONE
FOR i IN [0 ..< middle_py.length - 1]

FOR j IN [1 ..= min(7, middle_py.length - i)]
p = middle_py[i], q = middle_py[i + j]
IF dist(p, q) < closest_d

closest_d = dist(p, q)
closest_p = p, closest_q = q

RETURN closest_p, closest_q, closest_d

36
At most 6 points vertically “between” the two closest points.

Exercise Question 2

Loop Unrolling

38

FOR j IN [1 ..= min(7, middle_py.length - i)]

p = middle_py[i], q = middle_py[i + j]

IF dist(p, q) < closest_d

closest_d = dist(p, q)

closest_p = p, closest_q = q

IF dist(middle_py[i], middle_py[i + 1]) < closest_d

 closest_d = dist(middle_py[i], middle_py[i + 1])

 closest_p = middle_py[i]

 closest_q = middle_py[i + 1]

IF dist(middle_py[i], middle_py[i + 2]) < closest_d

 closest_d = dist(middle_py[i], middle_py[i + 2])

 closest_p = middle_py[i]

 closest_q = middle_py[i + 2]

…

FUNCTION ClosestSplitPair(px, py, d)
n = px.length
x_median = px[n//2].x
middle_py = [p FOR p IN py

 IF x_median - d < p.x < x_median + d]

closest_d = INFINITY, closest_p = closest_q = NONE
FOR i IN [0 ..< middle_py.length - 1]

FOR j IN [1 ..= min(7, middle_py.length - i)]
p = middle_py[i], q = middle_py[i + j]
IF dist(p, q) < closest_d

closest_d = dist(p, q)
closest_p = p, closest_q = q

RETURN closest_p, closest_q, closest_d

pl

ql

dl

pr qr

dr

middle_py

x_median

dd

39

Theorem for correctness of ClosestPair

Theorem:

Provided a set of n points called P, the ClosestPair algorithm find the
closest pair of points according to their pairwise Euclidean distances.

40

ClosestPair finds the closest pair

Let p ∈ left, q ∈ right be a split pair with d(p, q) < d

Then

A. p and q ∈ middle_py, and

B. p and q are at most 7 positions apart in middle_py

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then our
ClosestSplitPair procedure finds it.

Corollary 2: ClosestPair is correct and runs in O(n lg n) since it has the
same recursion tree as merge sort

41

Proof—Part A

Let p ∈ left, q ∈ right be a split pair with d(p, q) < d

Then

A. p and q ∈ middle_py, and

If p = (x1,y1) ∈ left AND q = (x2,y2) ∈ right AND d(p,q) < d
Then

 x_median - d < x1 ≤ x_median and

 x_median ≤ x2 < x_median + d

Otherwise, p and q would not be the closest pair with d(p, q) < d

pl

ql

dl
pr qr

dr

middle_py

x_median
dd

p

q

42

Proof—Part A

Let p ∈ left, q ∈ right be a split pair with d(p, q) < d

Then

A. p and q ∈ middle_py, and

If p = (x1,y1) ∈ left AND q = (x2,y2) ∈ right AND d(p,q) < d
Then

 x_median - d < x1 ≤ x_median and

 x_median ≤ x2 < x_median + d

Otherwise, p and q would not be the closest pair with d(p, q) < d

pl

ql

dl
pr qr

dr

middle_py

x_median
dd

p

q

43

ClosestPair finds the closest pair

Let p ∈ left, q ∈ right be a split pair with d(p, q) < d

Then

A. p and q ∈ middle_py, and

B. p and q are at most 7 positions apart in middle_py

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then our
ClosestSplitPair procedure finds it.

Corollary 2: ClosestPair is correct and runs in O(n lg n) since it has the
same recursion tree as merge sort

44

pl

ql

dl

pr qr

dr

middle_py

x_median

dd

p

q

45

pl

ql

dl

pr qr

dr

middle_py

x_median

dd

p

q

46

pl

ql

dl

pr qr

dr

middle_py

x_median

dd

p

q

47

pl

ql

dl

pr qr

dr

middle_py

x_median

dd

p

q

48

pl

ql

dl

pr qr

dr

middle_py

x_median

dd

p

q

49

pl

ql

dl

pr qr

dr

middle_py

x_median

dd

p

q

50

pl

ql

dl

pr qr

dr

middle_py

x_median

dd

p

q

51

pl

ql

dl

pr qr

dr

middle_py

x_median

dd

p

q

52

X-value of middle point

p
53

X-value of middle point

p
54

X-value of middle point

p
55

X-value of middle point

p
56

X-value of middle point

p

d d

d

57

X-value of middle point

p

d d

d

58

X-value of middle point

d d

d

p

q

59

Proof—Part B

p and q are at most 7 positions apart in middle_py

x_median
dd

d

q

pl

ql

dl
pr qr

dr

middle_py

x_median
dd

p
q

60

Proof—Part B

p and q are at most 7 positions apart in middle_py

min[y1, y2]

x_median
dd

d

p

q

How many other points can possibly be in this area?

pl

ql

dl
pr qr

dr

middle_py

x_median
dd

p
q

61

Proof—Part B

p and q are at most 7 positions apart

in middle_py

Lemma 1: All points of middle_py with a y-coordinate between those of p and q lie
within those 8 boxes.

Proof:

1. First, recall that the y-coordinate of p, q differs by less than d.

2. Second, by definition of middle_py, all have an x-coordinate
between x_median += d.

min[y1, y2]

x_median
dd

d

p

q

62

Proof—Part B

p and q are at most 7 positions apart

in middle_py

Lemma 1: All points of middle_py with a y-coordinate between those of p and q lie
within those 8 boxes.

Lemma 2: At most one point of P can be in each box.

Proof: By contradiction. Suppose points a and b lie in the same box. Then

1. a and b are either both in L or both in R

2. d(a, b) <= d/2 sqrt(2) < d

min[y1, y2]

x_median
dd

d

p

q

This is a contradiction! How did we define d?

63

x_median

dd

d
p

q

Max distance within box is ൗ𝑑 2

cannot be here

64

ClosestPair finds the closest pair

Let p ∈ left, q ∈ right be a split pair with d(p, q) < d

Then

A. p and q ∈ middle_py, and

B. p and q are at most 7 positions apart in middle_py

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then our
ClosestSplitPair procedure finds it.

Corollary 2: ClosestPair is correct and runs in O(n lg n) since it has the
same recursion tree as merge sort

65

Closest Pair

1. Copy P and sort one copy by x and the other copy by y in O(n lg n)

2. Divide P into a left and right in O(n)

3. Conquer by recursively searching left and right

4. Look for the closest pair in middle_py in O(n)
• Must filter by x

• And scan through middle_py by looking at adjacent points

66

FUNCTION ClosestPair(px, py)
n = px.length
IF n == 2

RETURN px[0], px[1], dist(px[0], px[1])

 left_px = px[0 ..< n//2]

left_py = [p FOR p IN py IF p.x < px[n//2].x]
pl, ql, dl = ClosestPair(left_px, left_py)

 right_px = px[n//2 ..< n]

right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
pr, qr, dr = ClosestPair(right_px, right_py)

 d = min(dl, dr)

ps, qs, ds = ClosestSplitPair(px, py, d)

RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)

T(n/2)

O(1)

O(1)

O(1)

T(n)

O(n)

O(1)

O(n)

T(n/2)

O(n)

O(n)

O(1)

O(n)

T(n) = 2 T(n/2) + O(n)
 = O(n lg n)

67

T(n/2)

T(n/2)

FUNCTION MergeSort(array)

n = array.length

IF n == 1

RETURN array

left_sorted = MergeSort(array[0 ..< n//2])

right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

O(1)

O(1)

O(1)

T(n)

O(n)

O(1)

T(n) = 2 T(n/2) + O(n)
 = O(n lg n)

68

FUNCTION RecursiveFunction(some_input)
IF base_case:

Usually O(1)
RETURN base_case_work(some_input)

Two recursive calls, each with half the data
one = RecursiveFunction(some_input.first_half)
two = RecursiveFunction(some_input.second_half)

Combine results from recursive calls (usually O(n))
one_and_two = Combine(one, two)

 RETURN one_and_two

T(n/2)

O(1)

O(1)

T(n)

O(1)

T(n/2)

O(n)

T(n) = 2 T(n/2) + O(n)
 = O(n lg n)

69

70

Supplementary slides showing an example execution.

71

72

73

74

Closest Split Pair

75

76

77

78

79

80

81

82

83

Closest on Left Closest is Split Closest on Right

84

Closest on Left

85

Closest on Left

86

Closest on Left Closest is Split Closest on Right

87

Closest is Split

88

Closest is Split

p

q

89

	Slide 3: Closest Pair Algorithm
	Slide 5: Outline
	Slide 6: Extra Resources
	Slide 8: Closest Pair Problem
	Slide 9: Closest Pair Problem
	Slide 10: One-dimensional closest pair
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Closet Pair—Two-Dimensions
	Slide 19
	Slide 20: Closet Pair—Two-Dimensions
	Slide 21
	Slide 22: Closet Pair—Two-Dimensions
	Slide 23: Divide-and-Conquer
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Exercise Question 1
	Slide 32: Merge Sort and It’s Recurrence
	Slide 33
	Slide 34
	Slide 35: Key Idea
	Slide 36
	Slide 37: Exercise Question 2
	Slide 38: Loop Unrolling
	Slide 39
	Slide 40: Theorem for correctness of ClosestPair
	Slide 41: ClosestPair finds the closest pair
	Slide 42: Proof—Part A
	Slide 43: Proof—Part A
	Slide 44: ClosestPair finds the closest pair
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Proof—Part B
	Slide 61: Proof—Part B
	Slide 62: Proof—Part B
	Slide 63: Proof—Part B
	Slide 64
	Slide 65: ClosestPair finds the closest pair
	Slide 66: Closest Pair
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

