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Outline

Topics and Learning Objectives

• Learn more about Divide and Conquer paradigm

• Learn about the closest-pair problem and its O(n lg n) algorithm
• Gain experience analyzing the run time of algorithms

• Gain experience proving the correctness of algorithms

Exercise

• Closest Pair

5



Extra Resources

• Algorithms Illuminated: Part 1: Chapter 3
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Closest Pair Problem

• Input: P, a set of n points that lie in a (two-dimensional) plane

• Output: a pair of points (p, q) that are the “closest”
• Distance is measured using Euclidean distance: 

d(p, q) = sqrt((px - qx)
2 + (py - qy)

2)

• Assumptions: None
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Closest Pair Problem

• What is the brute force method for this search?

• What is the asymptotic running time of the brute force method?

Can we do better 
than O(n2)?
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One-dimensional closest pair

How would you find the closest two points?
• Sort by position : O(n lg n)
• Return the closest two using a linear scan : O(n)
• Total time : O(n lg n) + O(n) = O(n lg n)

Any problems using this approach for the two-dimensional case?
• Sorting does not generalize to higher dimensions!
• How do you sort the points?

p6 p4 p1 p3 p5 p7 p2

p1 p2 p3 p4 p5 p6 p7Input

p6 p4 p1 p3 p5 p7 p2
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1. Which two are closest 
on the y-axis?
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1. Which two are closest 
on the y-axis?
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on the y-axis?
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1. Which two are closest 
on the y-axis?

2. Which two are closest 
on the x-axis?
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1. Which two are closest 
on the y-axis?

2. Which two are closest 
on the x-axis?
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1. Which two are closest 
on the y-axis?

2. Which two are closest 
on the x-axis?

3. Which two are closest?
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1. Which two are closest 
on the y-axis?

2. Which two are closest 
on the x-axis?

3. Which two are closest?
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Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
1. Sort by x-coordinate

2. Sort other by y-coordinate
O(n lg n)
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Now we know we can’t do better than O(n lg n)



P  : [p0(1,10), p1(2,8), p2(7,3), p3(5,7), p4(8,4), p5(3,5), p6(10,9), p7(9,1)]

Px : [p0(1,10), p1(2,8), p5(3,5), p3(5,7), p2(7,3), p4(8,4), p7(9,1), p6(10,9)]

Py : [p7(9,1), p2(7,3), p4(8,4), p5(3,5), p3(5,7), p1(2,8), p6(10,9), p0(1,10)]

Sorted by x coordinate

Sorted by y coordinate
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Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
1. Sort by x-coordinate

2. Sort other by y-coordinate

• Can we still end up with a O(n lg n) algorithm for finding the closest pair?

• Does the closeness of two points on one axis matter?

O(n lg n)
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1. FUNCTION FindClosestPair(points)
2. points_x = copy_and_sort_by_x(points)
3. points_y = copy_and_sort_by_y(points)
4. RETURN ClosestPair(points_x, points_y)
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Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
1. Sort by x-coordinate

2. Sort other by y-coordinate

• Can we still end up with a O(n lg n) algorithm for finding the closest pair?

• Does the closeness of two points on one axis matter?

2. Apply the Divide-and-Conquer method

O(n lg n)
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Divide-and-Conquer

1. DIVIDE into smaller subproblems

2. CONQUER the subproblems via recursive calls

3. COMBINE solutions from the subproblems

• How would you divide the problems?
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y

x

1. Which two are closest 
on the y-axis?

2. Which two are closest 
on the x-axis?

3. Which two are closest?

4. How would you divide 
the search space?
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y

x

1. Which two are closest 
on the y-axis?

2. Which two are closest 
on the x-axis?

3. Which two are closest?

4. How would you divide 
the search space?

This is the median x-value
This is not the average x-value
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1. FUNCTION ClosestPair(px, py)
2. n = px.length
3.    # What is the base case?
4. IF n == 2
5. RETURN px[0], px[1], dist(px[0], px[1])
6.  
7.  
8.  
9.    # What are the recursive cases?
10. pl, ql, dl = ClosestPair(left_px, left_py)
11.  
12.  
13.  
14. pr, qr, dr = ClosestPair(right_px, right_py)

How do we create these arrays?
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1. FUNCTION FindClosestPair(points)
2. points_x = copy_and_sort_by_x(points)
3. points_y = copy_and_sort_by_y(points)
4. RETURN ClosestPair(points_x, points_y)



P  : [p0(1,10), p1(2,8), p2(7,3), p3(5,7), p4(8,4), p5(3,5), p6(10,9), p7(9,1)]

Px : [p0(1,10), p1(2,8), p5(3,5), p3(5,7), p2(7,3), p4(8,4), p7(9,1), p6(10,9)]

Py : [p7(9,1), p2(7,3), p4(8,4), p5(3,5), p3(5,7), p1(2,8), p6(10,9), p0(1,10)]

Sorted by x coordinate

Sorted by y coordinate

1. How do we create left_px?
2. How do we create right_px?
3. How do we create left_py?
4. How do we create right_py?

left_px right_px

left_py right_py
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1. FUNCTION ClosestPair(px, py)
2. n = px.length
3. IF n == 2
4. RETURN px[0], px[1], dist(px[0], px[1])
5.  
6.    left_px = px[0 ..< n//2]
7. left_py = [p FOR p IN py IF p.x < px[n//2].x]
8. pl, ql, dl = ClosestPair(left_px, left_py)
9.  
10.    right_px = px[n//2 ..< n]
11. right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
12. pr, qr, dr = ClosestPair(right_px, right_py)

Median x value
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What is the running time of these operations?



Any problems 
with our current 

approach?
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1. FUNCTION ClosestPair(px, py)
2. n = px.length
3. IF n == 2
4. RETURN px[0], px[1], dist(px[0], px[1])
5.  
6.    left_px = px[0 ..< n//2]
7. left_py = [p FOR p IN py IF p.x < px[n//2].x]
8. pl, ql, dl = ClosestPair(left_px, left_py)
9.  
10.    right_px = px[n//2 ..< n]
11. right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
12. pr, qr, dr = ClosestPair(right_px, right_py)
13.  
14.    d = min(dl, dr)
15. ps, qs, ds = ClosestSplitPair(px, py, d)
16.  
17. RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)

What time complexity does this 
process need such that the overall 

algorithm runs in O(n lg n)?
Hint: think about Merge Sort.
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Exercise Question 1



Merge Sort and It’s Recurrence
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FUNCTION RecursiveFunction(some_input)
IF base_case:

# Usually O(1)
RETURN base_case_work(some_input)

# Two recursive calls, each with half the data
one = RecursiveFunction(some_input.first_half)
two = RecursiveFunction(some_input.second_half)

# Combine results from recursive calls (usually O(n))
one_and_two = Combine(one, two)

 RETURN one_and_two
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1. FUNCTION ClosestPair(px, py)
2. n = px.length
3. IF n == 2
4. RETURN px[0], px[1], dist(px[0], px[1])
5.  
6.    left_px = px[0 ..< n//2]
7. left_py = [p FOR p IN py IF p.x < px[n//2].x]
8. pl, ql, dl = ClosestPair(left_px, left_py)
9.  
10.    right_px = px[n//2 ..< n]
11. right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
12. pr, qr, dr = ClosestPair(right_px, right_py)
13.  
14.    d = min(dl, dr)
15. ps, qs, ds = ClosestSplitPair(px, py, d)
16.  
17. RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)

How do we find the 
closest pair that splits the 

two sides?
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Key Idea

• In ClosestSplitPair we only need to check for pairs that are closer 
than those found in the recursive calls to ClosestPair

• This is easier (faster) than trying to find the closest split pair without 
any extra information!

d = min[d(pl, ql), d(pr, qr)]
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FUNCTION ClosestSplitPair(px, py, d)
n = px.length
x_median = px[n//2].x
middle_py = [p FOR p IN py IF x_median - d < p.x < x_median + d]

closest_d = INFINITY, closest_p = closest_q = NONE
FOR i IN [0 ..< middle_py.length - 1]

FOR j IN [1 ..= min(7, middle_py.length - i)]
p = middle_py[i], q = middle_py[i + j]
IF dist(p, q) < closest_d

closest_d = dist(p, q)
closest_p = p, closest_q = q

RETURN closest_p, closest_q, closest_d

36
At most 6 points vertically “between” the two closest points.



Exercise Question 2



Loop Unrolling

38

FOR j IN [1 ..= min(7, middle_py.length - i)]

p = middle_py[i], q = middle_py[i + j]

IF dist(p, q) < closest_d

closest_d = dist(p, q)

closest_p = p, closest_q = q

IF dist(middle_py[i], middle_py[i + 1]) < closest_d

 closest_d = dist(middle_py[i], middle_py[i + 1])

 closest_p = middle_py[i]

 closest_q = middle_py[i + 1]

IF dist(middle_py[i], middle_py[i + 2]) < closest_d

 closest_d = dist(middle_py[i], middle_py[i + 2])

 closest_p = middle_py[i]

 closest_q = middle_py[i + 2]

…



FUNCTION ClosestSplitPair(px, py, d)
n = px.length
x_median = px[n//2].x
middle_py = [p FOR p IN py 

                IF x_median - d < p.x < x_median + d]

closest_d = INFINITY, closest_p = closest_q = NONE
FOR i IN [0 ..< middle_py.length - 1]

FOR j IN [1 ..= min(7, middle_py.length - i)]
p = middle_py[i], q = middle_py[i + j]
IF dist(p, q) < closest_d

closest_d = dist(p, q)
closest_p = p, closest_q = q

RETURN closest_p, closest_q, closest_d

pl

ql

dl

pr qr

dr

middle_py

x_median

dd
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Theorem for correctness of ClosestPair

Theorem: 

Provided a set of n points called P, the ClosestPair algorithm find the 
closest pair of points according to their pairwise Euclidean distances.
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ClosestPair finds the closest pair

Let p ∈ left, q ∈ right be a split pair with d(p, q) < d

Then

A. p and q ∈ middle_py, and

B. p and q are at most 7 positions apart in middle_py

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then our 
ClosestSplitPair procedure finds it.

Corollary 2: ClosestPair is correct and runs in O(n lg n) since it has the
same recursion tree as merge sort
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Proof—Part A

Let p ∈ left, q ∈ right be a split pair with d(p, q) < d

Then

A. p and q ∈ middle_py, and

If p = (x1,y1) ∈ left AND q = (x2,y2) ∈ right AND d(p,q) < d
Then 

 x_median - d < x1 ≤ x_median and 

 x_median     ≤ x2 < x_median + d

Otherwise, p and q would not be the closest pair with d(p, q) < d

pl

ql

dl
pr qr

dr

middle_py

x_median
dd

p

q
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Proof—Part A

Let p ∈ left, q ∈ right be a split pair with d(p, q) < d

Then

A. p and q ∈ middle_py, and

If p = (x1,y1) ∈ left AND q = (x2,y2) ∈ right AND d(p,q) < d
Then 

 x_median - d < x1 ≤ x_median and 

 x_median     ≤ x2 < x_median + d

Otherwise, p and q would not be the closest pair with d(p, q) < d

pl

ql

dl
pr qr

dr

middle_py

x_median
dd

p

q
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ClosestPair finds the closest pair

Let p ∈ left, q ∈ right be a split pair with d(p, q) < d

Then

A. p and q ∈ middle_py, and

B. p and q are at most 7 positions apart in middle_py

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then our 
ClosestSplitPair procedure finds it.

Corollary 2: ClosestPair is correct and runs in O(n lg n) since it has the
same recursion tree as merge sort
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p

q
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pl

ql

dl

pr qr

dr
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q
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X-value of middle point

p
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X-value of middle point

p
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X-value of middle point

p
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X-value of middle point

p
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X-value of middle point

p

d d

d
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X-value of middle point

p

d d

d
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X-value of middle point

d d

d

p

q
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Proof—Part B

p and q are at most 7 positions apart in middle_py

x_median
dd

d

q

pl

ql

dl
pr qr

dr

middle_py

x_median
dd

p
q
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Proof—Part B

p and q are at most 7 positions apart in middle_py

min[y1, y2]

x_median
dd

d

p

q

How many other points can possibly be in this area?

pl

ql

dl
pr qr

dr

middle_py

x_median
dd

p
q
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Proof—Part B

p and q are at most 7 positions apart 

in middle_py

Lemma 1: All points of middle_py with a y-coordinate between those of p and q lie 
within those 8 boxes.

Proof: 

1. First, recall that the y-coordinate of p, q differs by less than d. 

2. Second, by definition of middle_py, all have an x-coordinate 
between x_median += d.

min[y1, y2]

x_median
dd

d

p

q
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Proof—Part B

p and q are at most 7 positions apart 

in middle_py

Lemma 1: All points of middle_py with a y-coordinate between those of p and q lie 
within those 8 boxes.

Lemma 2: At most one point of P can be in each box.

Proof: By contradiction. Suppose points a and b lie in the same box. Then

1. a and b are either both in L or both in R

2. d(a, b) <= d/2 sqrt(2) < d

min[y1, y2]

x_median
dd

d

p

q

This is a contradiction! How did we define d?
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x_median

dd

d
p

q

Max distance within box is ൗ𝑑 2

cannot be here
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ClosestPair finds the closest pair

Let p ∈ left, q ∈ right be a split pair with d(p, q) < d

Then

A. p and q ∈ middle_py, and

B. p and q are at most 7 positions apart in middle_py

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then our 
ClosestSplitPair procedure finds it.

Corollary 2: ClosestPair is correct and runs in O(n lg n) since it has the
same recursion tree as merge sort
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Closest Pair

1. Copy P and sort one copy by x and the other copy by y in O(n lg n)

2. Divide P into a left and right in O(n)

3. Conquer by recursively searching left and right

4. Look for the closest pair in middle_py in O(n)
• Must filter by x

• And scan through middle_py by looking at adjacent points
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FUNCTION ClosestPair(px, py)
n = px.length
IF n == 2

RETURN px[0], px[1], dist(px[0], px[1])
 
   left_px = px[0 ..< n//2]

left_py = [p FOR p IN py IF p.x < px[n//2].x]
pl, ql, dl = ClosestPair(left_px, left_py)

 
   right_px = px[n//2 ..< n]

right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
pr, qr, dr = ClosestPair(right_px, right_py)

 
   d = min(dl, dr)

ps, qs, ds = ClosestSplitPair(px, py, d)
 

RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)

T(n/2)

O(1)

O(1)

O(1)

T(n)

O(n)

O(1)

O(n)

T(n/2)

O(n)

O(n)

O(1)

O(n)

T(n) = 2 T(n/2) + O(n)
     = O(n lg n)
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T(n/2)

T(n/2)

FUNCTION MergeSort(array)

n = array.length

IF n == 1

RETURN array

left_sorted = MergeSort(array[0 ..< n//2])

right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

O(1)

O(1)

O(1)

T(n)

O(n)

O(1)

T(n) = 2 T(n/2) + O(n)
     = O(n lg n)
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FUNCTION RecursiveFunction(some_input)
IF base_case:

# Usually O(1)
RETURN base_case_work(some_input)

# Two recursive calls, each with half the data
one = RecursiveFunction(some_input.first_half)
two = RecursiveFunction(some_input.second_half)

# Combine results from recursive calls (usually O(n))
one_and_two = Combine(one, two)

 RETURN one_and_two

T(n/2)

O(1)

O(1)

T(n)

O(1)

T(n/2)

O(n)

T(n) = 2 T(n/2) + O(n)
     = O(n lg n)
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Supplementary slides showing an example execution.
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Closest Split Pair
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Closest on Left Closest is Split Closest on Right
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Closest on Left
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Closest on Left
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Closest on Left Closest is Split Closest on Right
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Closest is Split
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Closest is Split

p

q
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