Asymptotic Notation (Big O)

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Discuss total running time
- Discuss asymptotic running time
- Learn about asymptotic notation

Exercise

Running time

Extra Resources

• Chapter 3: asymptotic notation

Comparing Algorithms and Data Structures

We like to compare algorithms and data structures

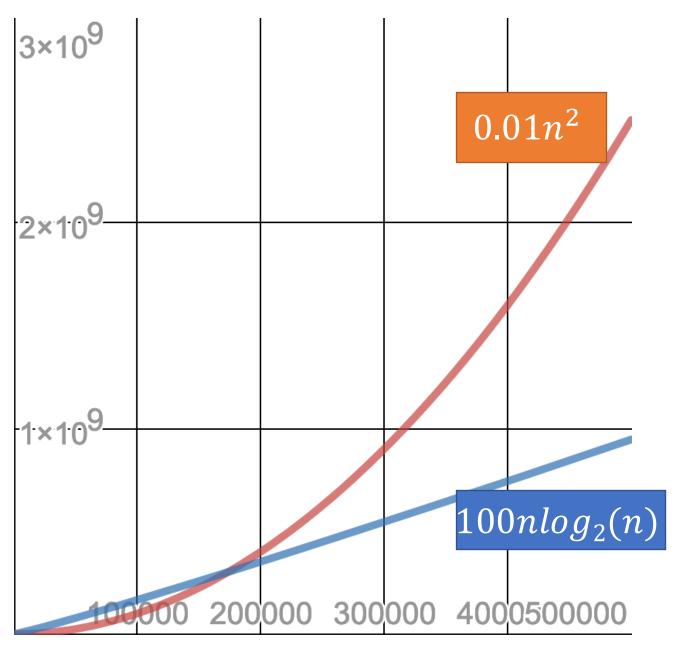
- Speed
- Memory usage

We don't always need to care about little details

We ignore some details anyway

- Data locality
- Differences among operations

Constants



Big-O Example Code (ODS 1.3.3)

```
# function_one has a total running time of 2 nlogn + 2n - 250
a = function_one(input_one)

# function_two has a total running time of 3 nlogn + 6n + 48
b = function_two(input_two)
```

• The total running time of the code above is:

$$2n\log n + 2n - 250 + 1 + 3n\log n + 6n + 48 + 1$$

$$5n\log n + 8n - 200$$

Big-O Example Math (ODS 1.3.3)

$$5n\log n + 8n - 200$$

- We don't care about most of these details
- We want to be able to quickly glance at the running time of an algorithm and know how it compares to others
- So we say the following

$$5n\log n + 8n - 200 = O(n\log n)$$

Big-O (Asymptotic Running Time)

$$T(n) = O(f(n))$$

If and only if (iff) we can find values for c, $n_0 > 0$, such that

$$T(n) \le c f(n)$$
, where $n \ge n_0$

Note: c, n₀ cannot depend on n

Searching an array for a given number?

Write an algorithm (in pseudocode): What is the total running time?

Searching an array for a given number?

What is the asymptotic running time? T(n) = 2n + 1

Search two separate arrays (sequentially) for a given number?

Write an algorithm (in pseudocode): What is the total running time?

Search two separate arrays (sequentially) for a given number?

What is the asymptotic running time? T(n) = 4n + 3

Searching two arrays for any common number?

Write an algorithm (in pseudocode): What is the total running time?

Searching two arrays for any common number?

What is the asymptotic running time? $T(n) = 2n^2 + 2n + 1$

Searching two arrays for any common number?

What is the asymptotic running time? $T(n) = 2n^2 + 2n + 1$

Searching a single array for duplicate numbers?

Write an algorithm (in pseudocode): What is the total running time?

Searching a single array for duplicate numbers?

What is the asymptotic running time? T(n) = 21nlgn + 25n + 1

Searching a single array for duplicate numbers?

What is the asymptotic running time? T(n) = 21nlgn + 25n + 1

Big-O Examples

• Claim: $2^{n+10} = O(2^n)$

$$T(n) = O(f(n))$$

If and only if we can find values for c, $n_0 > 0$, such that

$$T(n) \le c f(n)$$
, where $n \ge n_0$

Note: c, n₀ cannot depend on n

Big-O Examples

• Claim: $2^{10n} = O(2^n)$

$$T(n) = O(f(n))$$

If and only if we can find values for c, $n_0 > 0$, such that

$$T(n) \le c f(n)$$
, where $n \ge n_0$

Note: c, n₀ cannot depend on n

Big-O Examples

$$T(n) = O(f(n))$$

If and only if we can find values for c, $n_0 > 0$, such that

$$T(n) \le c f(n)$$
, where $n \ge n_0$

Note: c, n₀ cannot depend on n

• Claim: for every $k \ge 1$, n^k is **not** $O(n^{k-1})$

$$T(n) = \Theta(f(n))$$

If and only if we can find values for $c, n_0 > 0$, such that $c_1 f(n) \le T(n) \le c_2 f(n)$, where $n \ge n_0$ Note: $c_1, c_2, n_0 \underline{cannot}$ depend on n

Other Notations

```
• Big-O (\leq) : T(n) = O(f(n)) if T(n) \leq c f(n), where n \geq n_0

• Big-Omega (\geq) : T(n) = \Omega(f(n)) if T(n) \geq c f(n), where n \geq n_0

• Theta (=) : T(n) = \Theta(f(n)) if T(n) = O(f(n)) and T(n) = \Omega(f(n))

• C_1 f(n) \leq T(n) \leq C_2 f(n), where n \geq n_0
```

Other Notations

- Big-O (\leq) : T(n) = O(f(n)) if T(n) \leq c f(n), where n \geq n₀
- little-o (<)

- Big-Omega (\geq) : T(n) = $\Omega(f(n))$ if T(n) \geq c f(n), where $n \geq n_0$
- Little-omega (>)

$$T(n) = \Theta(f(n))$$

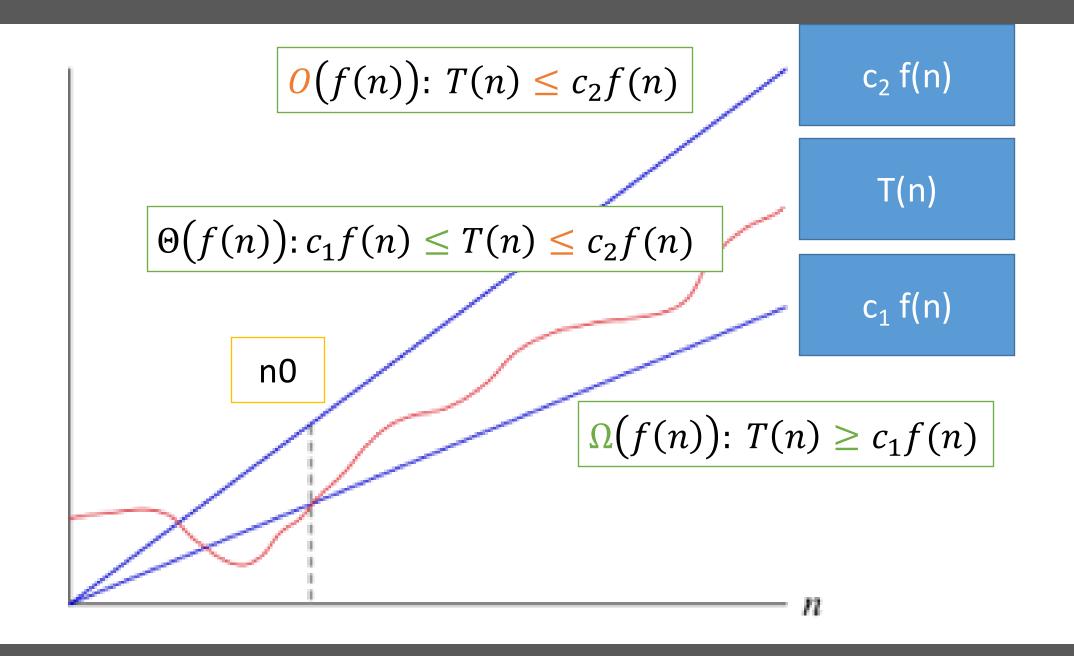
If and only if we can find values for $c, n_0 > 0$, such that $c_1 f(n) \le T(n) \le c_2 f(n)$, where $n \ge n_0$ Note: $c_1, c_2, n_0 \underline{cannot}$ depend on n

$$T(n) = \Theta(f(n))$$

If and only if we can find values for $c, n_0 > 0$, such that $c_1 f(n) \le T(n) \le c_2 f(n)$, where $n \ge n_0$ Note: $c_1, c_2, n_0 \underline{cannot}$ depend on n

$$T(n) = \Theta(f(n))$$

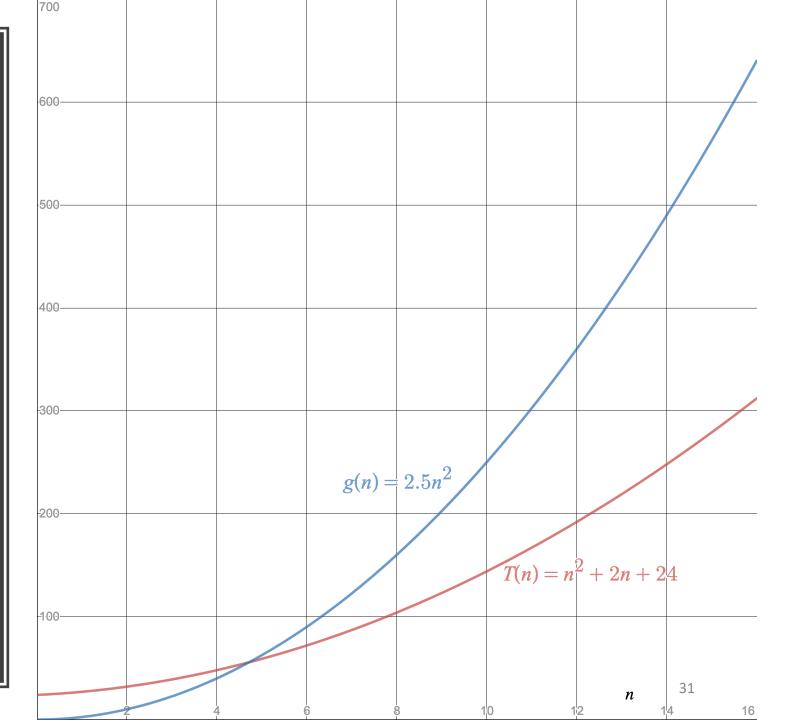
If and only if we can find values for $c, n_0 > 0$, such that $c_1 f(n) \le T(n) \le c_2 f(n)$, where $n \ge n_0$ Note: $c_1, c_2, n_0 \underline{cannot}$ depend on n



What is f(n)?

What are good values for:

- C
- n_0



Insertion Sort vs Merge Sort

Computer A : Insertion Sort

10,000 MIPS 2n² Computer B : Merge Sort

10 MIPS 50 n lg n

5.5 hours

23 days

10 million numbers

100 million numbers

20 minutes

4 hours

Simplifying the Comparison

Why can we remove leading coefficients?

• Why can we remove lower order terms?

- They are both insignificant when compared with the growth of the function.
- They both get factored into the constant "c"