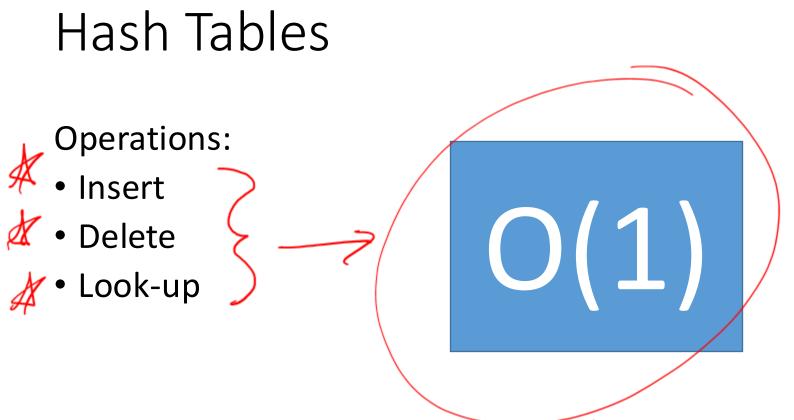
Universal Hashing

https://cs.pomona.edu/classes/cs140/



What are they not good for?

Guaranteed constant running time for those operations if:

- I If the hash table is properly implemented, and
- 2. The data is non-pathological.)

Pathological Data Sets

• We want our hash functions to "spread-out" the data (i.e., minimize collisions)

- Unfortunately, <u>no perfect hash function exists (it's impossible)</u>
- You can create a pathological data set for any hash function

With the pigeonhole principle, there must exist a bucket i, such that at least |U|/n elements of U hash to i under h

Fix (create) the hash function $h(x) \rightarrow \{0, 1, ..., n-1\}$, where **n** is the number of buckets in the hash table and n < <

Pathological Data Sets

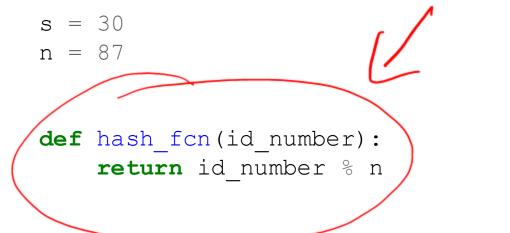
Purposefully select only the elements that map to the same bucket.

Niverr

 $h(X_{k}) = i$

Pathological Data Set Example

- We want to store student student ID numbers in a hash table.
- We will store about 30 students worth of data
- Let's use a hash table with 87 buckets
- Let's use the final three numbers as the hash



Output:

Number of unique student IDs: 30 Number of unique hash values: 28

Number of unique student IDs: 30 Number of unique hash values: 1

id_numbers = [randint(1000000, 99999999) for _ in range(s)]
hash_values = map(hash_fcn, id_numbers)
print('Number of unique student IDs:', len(set(id_numbers)))
print('Number of unique hash values:', len(set(hash values)))

id_numbers_pathological = [round(num, -2) for num in id_numbers]
hash_values_pathological = map(hash_fcn, id_numbers_pathological)
print('Number of unique student IDs:', len(set(id_numbers_pathological)))
print('Number of unique hash values:', len(set(hash_values_pathological)))

Real World Pathological Data Dos Distributed Dos

- Denial of service attack (DOS)
- A study in 2003 found that they could interrupt the service of any server with the following attributes:
 - 1. The server used an open-source hash table
 - 2. The hash table uses an easy-to-reverse-engineer hash function
- How does reverse engineering the hash function help an attacker? Creete a pathological data set of IPs

Solutions to Pathological Data

Use a cryptographic hash function

• Infeasible to create pathological data for such a function (but not theoretically impossible)

Use randomization (Can still be an open-source implementation!)

- 1. Create a family of hash functions
- 2. Randomly pick one at runtime

h(x) =

Universal Hashing

Let H be a set of hash functions mapping U to {0, 1, ..., n-1}

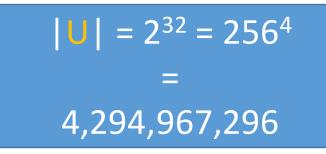
The family H is <u>universal</u> if and only if for all x, y in \cup

 $Pr(h(x) = h(y)) \le 1/n$ Probability of a collision given any hash function

where h is chosen uniformly at random from H

Hash functions do not consistently map a set of inputs to the same bucket

Example: Hashing IP Addresses



- What is \cup ? And how big is \cup ?
- U includes all IP addresses, which we'll denote as 4-tuples example: X = (x₁, x₂, x₃, x₄) where x_i is in [0, 255]
- Let n = some prime number that is near a multiple of the number of objects we expect to store example: |S| = 500, we set n = 997
 Let n = some prime number that is near a multiple of the number of hash function?
- Let H be our set of hash functions example: $h(x) = A \text{ dot } X \text{ mod } n = (a_1x_1 + a_1x_2 + a_1x_3 + a_1x_4) \text{ mod } n$ where $A = (a_1, a_2, a_3, a_4)$ and a_i is in [0, n-1]H includes all combinations the coefficients in A $(H) = n^4$ = 988 billion

$$h(x) = (a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4) \% n$$

Here are some members of H

•
$$h_{\alpha}(x) = (1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 + 1 \cdot x_4) \% n$$

•
$$h_{\beta}(x) = (0 \cdot x_1 + 127 \cdot x_2 + 91 \cdot x_3 + 88 \cdot x_4) \% n$$

•
$$h_y(x) = (14 \cdot x_1 + 13 \cdot x_2 + 12 \cdot x_3 + 11 \cdot x_4) \% n$$

n = 997

ip_address = [randrange(256) for _ in range(4)] # i.e., 192.168.3.7
hash_coeff = [randrange(n) for _ in range(4)]

print("IP address :", ".".join(map(str, ip_address)))
print("Hash coefficients :", hash_coeff)
print("Hash value :", ip_hash_fcn(ip_address, hash_coeff))

Hash value : 97

Example: Hashing IP Addresses

Theorem: the family H is universal

 $\frac{\# \ of \ functions \ that \ map \ x \ and \ y \ to \ the \ same \ location}{total \ \# \ of \ functions} \leq \frac{1}{n}$

- Let H be a set of hash functions mapping U to {0, 1, ..., n-1}
- The family H is universal if and only if for all x, y in U
- $Pr(h(x) = h(y)) \leq 1/n$
- where h is chosen uniformly at random from H

Hashing IP Addresses Proof

- Consider two *distinct* IP addresses X and Y
- Assume that $x_4 \neq y_4$ (they might differ in other places as well)
 - The same argument will hold regardless of which part of the tuple we consider
- Based on our choice of (h_i) what is the probability of a collision?
 - What fraction of hash functions (h_i) cause a collision? Pr[h(X) = h(Y)]
- Where h_i is any of the hash function from H
- We want to show that ≤ 1/n of the billions of hash functions have a collision for X and Y

Theorem: for any possible hash function, the probability of a collision between objects X and Y is $\leq \frac{1}{n}$

Hash functions are selected from the hash family by <u>randomly</u> generating four values for A

Collision between objects X and Y

$$h(X) = h(Y)$$

$$(A \cdot X) \mod n = (A \cdot Y) \mod n$$
$$(a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4) \mod n = (a_1 y_1 + a_2 y_2 + a_3 y_3 + a_4 y_4) \mod n$$
$$0 = [a_1 (y_1 - x_1) + a_2 (y_2 - x_2) + a_3 (y_3 - x_3) + a_4 (y_4 - x_4)] \mod n$$

Theorem: for any possible hash function, the probability of a collision between objects X and Y is $\leq \frac{1}{n}$

Hash functions are selected from the hash family by <u>randomly</u> generating four values for A

$$0 = [a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3) + a_4(y_4 - x_4)] \mod n$$

Something must be different between X and Y. Let's assume that $X_4 \neq Y_4$

$$a_4(x_4 - y_4) \mod n = [a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3)] \mod n$$
Non-zero value that depends on a_4
Assume n is prime.

From here we are going to **fix** our choices of a_1 , a_2 , and a_3 and let a_4 continue to be a random variable Principle of Deferred Decisions

We want to show that for any value of a_4 we have a $\frac{1}{n}$ chance of a collision.

Theorem: for any possible hash function, the probability of a collision between objects X and Y is $\leq \frac{1}{n}$

Something must be different between X and Y. Let's assume that $x_4 \neq y_4$ Non-zero value that depends on a_4 $a_4(x_4 - y_4) \mod n = [a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3)] \mod n$ $a_4(x_4 - y_4) \mod n = [a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3)] \mod n$ From here we are going to **fix** our choices of a_1 , a_2 , and a_3 and let a_4 be a random

variable | Principle of Deferred Decisions

We want to show that for any value of a_4 we have a $\frac{1}{n}$ chance of a collision.

How many choices of a_4 satisfy the above equation?

TTYNs

- Our RHS is some constant! It is just some number in [0, n-1] because X, Y, and a₁, a₂, a₃ are fixed
- If *n* is a prime number, then the LHS is equally likely to be any number from [0, n-1]
 - This claim requires some number theory to properly prove

Unique multiplicative

Thus, based on our choice for a_4 , we have that Pr(h(X) = h(Y)) = 1/n

Prime number for n

$$n = 7, x_4 = 3, y_4 = 1$$

$$a_4 \quad a_4(x_4 - y_4) \mod n$$

$$0 \quad 0 \quad (2) \quad y_0 = 0$$

$$1 \quad 1 \quad (2) \quad y_0 = 2$$

$$2 \quad 2 \quad (2) \quad y_0 = 4$$

$$3 \quad 3 \quad (2) \quad y_0 = 4$$

$$3 \quad 3 \quad (2) \quad y_0 = 6$$

$$4 \quad 4 \quad (2) \quad y_0 = 1$$

$$5 \quad 5 \quad (2) \quad y_0 = 1$$

$$5 \quad 5 \quad (2) \quad y_0 = 5$$

Different

functions

from the

family H

hash

X = (x_1, x_2, x_3, x_4) where x_i is in [0, 255] Y = (y_1, y_2, y_3, y_4) where y_i is in [0, 255] A = (a_1, a_2, a_3, a_4) and a_i is in [0, n-1]

|S| = 500 n = 997

 $h(x) = (A \cdot X) \mod n$

And H includes all combinations for the coefficients in A

What do we want in the second column?

Different values indicate different hash values, which is good.

 $a_4(x_4 - y_4) \mod n = [a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3)] \mod n^{22}$

Prime number for n

	a_4	$a_4(x_4 - y_4) \bmod n$
	0	0
Different hash functions from the family H	1	2
	2	4
	3	6
	4	1
	5	3
	6	5

$$n = 7, x_4 = 4, y_4 = 1$$

a_4	$a_4(x_4 - y_4) \mod n$
0	0
1	3
2	6
3	2
4	5
5	1
6	4

Non-Prime number for n

x4-y4 shares factors with n n = 8, $x_4 = 3$, $y_4 = 1$

a_4	$a_4(x_4 - y_4) \mod n$
0	0
1	2
2	4
3	6
4	0
5	2
6	4
7	6

Different

functions

from the

family H

hash

a_4	$a_4(x_4 - y_4) \mod n$	
0		0
1		3
2		6
3		1
4		4
5		7
6		2
7		524

Summary

- We cannot create a hash function that prevents creation of a pathological dataset
- As long as the hash function is known, a pathological dataset can be created

• We can create families of hash functions that make it infeasible to guess which hash function is in use