Fibonacci Heaps

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Discuss Fibonacci Heaps
- Understand the benefits of Fibonacci Heaps
- Analyze the amortized running time of Fibonacci Heaps

Exercise

• Fibonacci Heap practice

Extra Resources

- <u>https://www.cl.cam.ac.uk/teaching/2021/Algorithms/notes2.pdf</u>
 - Section 7

1) ynamically Resizing Arrays for i in rang (n): l. append (i) nl= [$\frac{1}{2} O(1) = \frac{1}{2} O(1)$ læpend s Insert (1)amortized

What edges does Dijkstra's Algorithm consider in the current iteration?

What edges does Dijkstra's Algorithm consider in the current iteration?

Dijkstra's Reminders

During each iteration we need to:

- . Find the vertex v that
 - Is reachable from the start vertex using the vertices found so far
 - Has the minimal path length from the start vertex among all options

Decrease Key 2. Update the possible paths lengths of all vertices connected to v

Priority Queue Types

- Binary Heap Priority Queue
- Binomial Heap Priority Queue
- Linked List Priority Queue
- Fibonacci Heap Priority Queue

Binary Heap Priority Queue

- An almost-full (complete) binary tree
- Satisfies the heap property

<u>Insert</u>

Add to the end and bubble up, O(lg n)

Extract-Min

Replace root with last node and bubble down, O(lg n)

Decrease-Key

• Change key and bubble up, O(lg n)

Linked List Priority Queue

- A normal, doubly linked-list
- Really, nothing special but good for comparison

<u>Insert</u>

Add to the end and update min pointer if needed, O(1)

Extract-Min

- Remove the min node, then find the new min node, O(n) Decrease-Key
- Change key and update min pointer if needed, O(1)

Binomial Heap Priority Queue

- Uses a forest of binomial trees with no more than one tree of each degree
- Maintaining the binomial forest property
 - 1. A single node (a tree with degree 0)
 - 2. Two trees of degree 0 can be merged (degree 1)
 - 3. Two trees of degree 1 can be merged (degree 2)
 - 4. Two trees of degree 2 can be merged
 - 5. ...
- Degree denotes a node's number of children
- Merge by making one tree a child of the other

Binomial Heap Priority Queue

- Uses a forest of binomial trees, each satisfies the heap property
- At most one tree of each degree

<u>Insert</u>

- Create a new, single-node tree and merge as needed, O(1)_{amortized}
 <u>Extract-Min</u>
- Remove min root, promote its children, and merge as needed, O(lg n)
 Decrease-Key
- Change key and bubble up, O(lg n)

Example Binomial Heap

Operations:

- Insert 10 1
- Insert 16
- Insert 12
- Insert 14
- Insert 8
- Insert 17
- Insert 20
- Extract-Min
- Extract-Min

At most one tree of each degree

<u>Insert</u>

Create a new, single-node tree and merge as needed, $O(1)_{amortized}$ <u>Extract-Min</u> Remove min root, promote its children, and merge as needed, $O(\lg n)$

Priority Queue Comparison

	Find Min	Extract Min	Insert	Decrease Key
Binary Heap	O(1)	O(lg n)	O(lg n)	O(lg n)
Linked List	O(1)	O(n)	O(1)	O(1)
Binomial Heap	O(1)	O(lg n)	O(1) _{amortized}	O(lg n)
Fibonacci Heap				

Priority Queue Comparison

		Find Min	Extract Min	Insert	Decrease Key
1	Binary Heap	O(1)	O(lg n)	O(lg n)	O(lg n)
	Linked List	O(1)	O(n)	O(1)	O(1)
	Binomial Heap	O(1)	O(lg n)	O(1) _{amortized}	O(lg n)
	Fibonacci Heap	O(1)	🗴 O(lg n) _{amortized}	O(1)	O(1) amortized

Quick Note on Amortized Analysis

- We skipped this lecture, but we might fit it back in later
- Here's the important part
 - If we perform an operation k times, then

Total true cost = O(Amortized cost) Total true cost \leq c (Amortized cost) for all n \geq n₀

We might do a lot of work in one call, but this work will benefit later calls

Fibonacci Heap, Basic Idea

- Maintain a set of Heaps (not necessarily binomial trees)
- Maintain a pointer to the minimum element
 - The minimum element will be the root of one of the heaps
- Maintain a set of "marked" nodes (new concept)
- Lazily add nodes
- Cleanup in batches (more efficient this way) (only on an extract)

Fibonacci Heap, Important Operations

- FibPQInsert
- FibPQExtractMin
- FibPQDecreaseKey

children: List[HeapNode<T>] = []

FUNCTION FibPQInsert(pq, value, key) newNode = HeapNode(value, key) Running Time? pq.heaps.add(newNode) pq.lookupTable[value] = newNode IF newNode.key < pq.minNode.key THEN pq.minNode = newNode Example MIN MIN

Remove the minimum heap node

Promote children

...

•••

•••

•••

...

Continually merge heaps with the same degree

Create new list of root heaps

Set the new minimum

RETURN extractedNode.value

Remove the minimum heap node

Create new list of root heaps
...
Set the new minimum
...

RETURN extractedNode.value

STRUCT HeapNode<T>

value: T
key: Comparable
degree: Integer = 0
isLoser: Boolean = FALSE
parent: HeapNode<T> = NONE
children: List[HeapNode<T>] = []

Remove the minimum heap node

Promote children

...

...


```
# Continually merge heaps with the same degree
heapsByDegree = [NONE FOR IN pq.heaps]
FOR heap IN pq.heaps
   currentHeap = heap
   LOOP
      currentDegree = currentHeap.degree
      BREAK IF heapsByDegree[currentDegree] != NONE
      heapWithSameDegree = heapsByDegree[currentDegree]
      heapsByDegree [currentDegree] = NONE
      # Merge two trees
      IF currentHeap.key < heapWithSameDegree.key
         currentHeap.degree += 1
         currentHeap.children.append(heapWithSameDegree)
         heapWithSameDegree.parent = currentHeap
      ELSE
         heapWithSameDegree.degree += 1
         heapWithSameDegree.children.append(currentHeap)
         currentHeap.parent = heapWithSameDegree
   heapsByDegree[currentDegree] = currentHeap
```

Same process as for Binomial Heaps

Remove the minimum heap node

RETURN extractedNode.value

Remove the minimum heap node

FUNCTION FibPQDecreaseKey(pq, value, newKey)

```
node = pq.lookupTable[value]
```

```
node.key = newKey
```

```
parent = node.parent
```

```
IF parent != NONE && node.key < parent.key
```

LOOP

```
parent.children.remove(node)
```

```
pq.heaps.add(node)
```

```
IF node.key < pq.minNode.key THEN pq.minNode = node</pre>
```

```
node.isLoser = FALSE
```

```
BREAK IF parent == NONE || parent.isLoser == FALSE
```

```
parent = node.parent, node = parent
```

```
IF parent != NONE
```

```
parent.isLoser = TRUE
```

FUNCTION FibPQDecreaseKey(pq, value, newKey)

```
node = pq.lookupTable[value]
```

```
node.key = newKey
```

```
parent = node.parent
```

```
IF parent != NONE && node.key < parent.key
```

LOOP

```
parent.children.remove(node)
```

```
pq.heaps.add(node)
```

```
IF node.key < pq.minNode.key THEN pq.minNode = node</pre>
```

```
node.isLoser = FALSE
```

```
BREAK IF parent == NONE || parent.isLoser == FALSE
```

```
parent = node.parent, node = parent
```

```
IF parent != NONE
```

```
parent.isLoser = TRUE
```

Exercise

List of roots:

```
FUNCTION FibPQDecreaseKey(pq, value, newKey)
   node = pq.lookupTable[value]
   node.key = newKey
   parent = node.parent
   IF parent != NONE && node.key < parent.key
      LOOP
         parent.children.remove(node)
         pq.heaps.add(node)
         IF node.key < pq.minNode.key THEN pq.minNode = node</pre>
         node.isLoser = FALSE
         BREAK IF parent == NONE || parent.isLoser == FALSE
        parent = node.parent, node = parent
      IF parent != NONE
         parent.isLoser = TRUE
```

Example from Damon Wischik at Cambridge University.

Final Fibonacci Heap

List of roots:

6

parent.isLoser = TRUE

LOOP

```
parent.children.remove(node)
pq.heaps.add(node)
IF node.key < pq.minNode.key THEN pq.minNode = node
node.isLoser = FALSE
BREAK IF parent == NONE || parent.isLoser == FALSE
parent = node.parent, node = parent
IF parent != NONE</pre>
```


Initial Fibonacci Heap

Final Fibonacci Heap

Initial Fibonacci Heap

Final Fibonacci Heap

6

Fibonacci Heap, Important Operations

- FibPQInsert
- FibPQExtractMin
- FibPQDecreaseKey

Fibonacci Heaps Insert Running Time

Insert

• All we do is add a single node to the list of heaps and then check to see if it is the new minimum node

Extract-Min

- 1. Remove the minimum heap node
- 2. Promote children
- 3. Continually merge heaps with the same degree
- 4. Create new list of root heaps
- 5. Set the new minimum
- 6. Return the extracted node

Which of these are the easiest?

Extract-Min

- 1. Remove the minimum heap node, O(1)
- 2. Promote children
- 3. Continually merge heaps with the same degree
- 4. Create new list of root heaps
- 5. Set the new minimum
- 6. Return the extracted node, O(1)

Extract-Min

- 1. Remove the minimum heap node, O(1)
- 2. Promote children
- 3. Continually merge heaps with the same degree
- 4. Create new list of root heaps
- 5. Set the new minimum
- 6. Return the extracted node, O(1)

Promote children

- What is the maximum number of children for the minimum?
- It depends on the number of nodes in the Fibonacci heap
- For now, let's call this d_{max}
 - This is the maximum degree of any node
 - Remember that degree denotes the number of direct children of a node
 - We'll figure how an upper bound on *d_{max}* later
- Promotion then takes O(d_{max})

Extract-Min

- 1. Remove the minimum heap node, O(1)
- 2. Promote children, O(*d*_{max})
- 3. Continually merge heaps with the same degree
- 4. Create new list of root heaps
- 5. Set the new minimum
- 6. Return the extracted node, O(1)

Continually merge heaps with the same degree

- With n nodes in the Fibonacci heap, what is the maximum number of merges we can perform?
- O(n) For example, if we have a bunch of singleton heaps.
- This seems like we will do O(n) work to perform the Extract-Min operation!
- However, we very rarely perform O(n) merges
- An amortized analysis tells us that the aggregate cost of this operation is actually O(lg n)

I have provided some resources on the course website, but we'll skip the analysis for now.

Extract-Min

- 1. Remove the minimum heap node, O(1)
- 2. Promote children, O(*d*_{max})
- 3. Continually merge heaps with the same degree, O(lg n)
- 4. Create new list of root heaps
- 5. Set the new minimum
- 6. Return the extracted node, O(1)

Remove the minimum heap node

Promote children

...

...

•••

Continually merge heaps with the same degree

Create new list of root heaps

pq.heaps = [heap **FOR** heap **IN** heapsByDegree **IF** heap != NONE]

RETURN extractedNode.value

Extract-Min

- 1. Remove the minimum heap node, O(1)
- 2. Promote children, O(*d*_{max})
- 3. Continually merge heaps with the same degree, O(lg n)_{amortized}
- 4. Create new list of root heaps, $O(d_{max})$
- 5. Set the new minimum, $O(d_{max})$
- 6. Return the extracted node, O(1)

We'll come back to d_{max} in a bit!

Fibonacci Heaps Decrease-Key Running Time

Decrease-Key

- 1. Change key in constant time
- 2. Two cases
 - 1. If there is no heap violation, then we are done
 - 2. If there is a heap violation, then we recursively
 - 1. Promote the node
 - 2. Check if the parent is a double loser
 - 1. If the parent is not a loser, then we mark it as a loser and we are done
 - 2. Otherwise, we continue to "promote the node" with parent as the current node

Fibonacci Heaps Decrease-Key Running Time

Decrease-Key

1. Change key in constant time

What is the running time of this path?

- 2. Two cases
 - 1. If there is no heap violation, then we are done
 - 2. If there is a heap violation, then we recursively
 - 1. Promote the node
 - 2. Check if the parent is a double loser
 - 1. If the parent is not a loser, then we mark it as a loser and we are done
 - 2. Otherwise, we continue to "promote the node" with parent as the current node

Fibonacci Heaps Decrease-Key Running Time

Decrease-Key

- 1. Change key in constant time
- 2. Two cases
 - 1. If there is no heap violation, then we are done
 - 2. If there is a heap violation, then we recursively
 - 1. Promote the node

What is the running time of this path?

- 2. Check if the parent is a double loser
 - 1. If the parent is not a loser, then we mark it as a loser and we are done
 - 2. Otherwise, we continue to "promote the node" with parent as the current node

It appears to be O(lg n)

An amortized analysis will give us a running time of $O(1)_{amortized}$

Losers, d_{max}, and Naming Rights

- We only merge trees with the same degree
- Looking at a single tree with degree d, you'll see that
 - The leftmost child has degree d-1
 - The second from the left has degree d-2
 - The third from the left has degree d-3
 - And so on
 - The rightmost child has degree 0
- If a node loses one child, then we have the same basic structure
- If a node loses two children, then it is kicked out of the tree

Losers, *d_{max}*, and Naming Rights

Summary

- Fibonacci Heaps are based on the idea of lazy cleanup
- We don't fix the binomial trees until we can fix a bunch at the same time
- We need amortized analysis to show a more useful running time (instead of a worst-case running time)

	Find Min	Extract Min	Insert	Decrease Key
Binary Heap	O(1)	O(lg n)	O(lg n)	O(lg n)
Binomial Heap	O(1)	O(lg n)	O(1) _{amortized}	O(lg n)
Linked List	O(1)	O(n)	O(1)	O(1)
Fibonacci Heap	O(1)	O(lg n) _{amortized}	O(1)	O(1) _{amortized}