
Fibonacci Heaps
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

• Discuss Fibonacci Heaps

• Understand the benefits of Fibonacci Heaps

• Analyze the amortized running time of Fibonacci Heaps

Exercise

• Fibonacci Heap practice

3

Extra Resources

• https://www.cl.cam.ac.uk/teaching/2021/Algorithms/notes2.pdf
• Section 7

4

https://www.cl.cam.ac.uk/teaching/2021/Algorithms/notes2.pdf

5

6

What edges does Dijkstra’s Algorithm consider in the current iteration?

21

12

3 2

22

30

17

14

21

59

31

19

15

W

X

Y

Z

U

T

C

A

B

13

5

V

S

P

R

Q

5

7

What edges does Dijkstra’s Algorithm consider in the current iteration?

21

12

3
2

22
30

17

14

21

59

31

19

15

W

X

Y

Z

U

T

C

A

B

13

5

V

S

P

R
Q

5

Dijkstra’s Reminders

During each iteration we need to:

1. Find the vertex v that
• Is reachable from the start vertex using the vertices found so far

• Has the minimal path length from the start vertex among all options

2. Update the possible paths lengths of all vertices connected to v

Extract Min

Decrease Key

8

Priority Queue Types

• Binary Heap Priority Queue

• Binomial Heap Priority Queue

• Linked List Priority Queue

• Fibonacci Heap Priority Queue

9

Binary Heap Priority Queue

• An almost-full (complete) binary tree

• Satisfies the heap property

Insert

• Add to the end and bubble up, O(lg n)

Extract-Min

• Replace root with last node and bubble down, O(lg n)

Decrease-Key

• Change key and bubble up, O(lg n)

10

Linked List Priority Queue

• A normal, doubly linked-list

• Really, nothing special but good for comparison

Insert

• Add to the end and update min pointer if needed, O(1)

Extract-Min

• Remove the min node, then find the new min node, O(n)

Decrease-Key

• Change key and update min pointer if needed, O(1)

11

Binomial Heap Priority Queue

• Uses a forest of binomial trees with no more than one tree of each degree

• Maintaining the binomial forest property
1. A single node (a tree with degree 0)

2. Two trees of degree 0 can be merged (degree 1)

3. Two trees of degree 1 can be merged (degree 2)

4. Two trees of degree 2 can be merged

5. …

• Degree denotes a node’s number of children

• Merge by making one tree a child of the other

12

Binomial Heap Priority Queue

• Uses a forest of binomial trees, each satisfies the heap property

• At most one tree of each degree

Insert

• Create a new, single-node tree and merge as needed, O(1)amortized

Extract-Min

• Remove min root, promote its children, and merge as needed, O(lg n)

Decrease-Key

• Change key and bubble up, O(lg n)

13

You don’t need to
understand the details;

we just want to compare
with a Fibonacci Heap

14

Example Binomial Heap

Operations:
- Insert 10
- Insert 16
- Insert 12
- Insert 14
- Insert 8
- Insert 17
- Insert 20
- Extract-Min
- Extract-Min

At most one tree of each degree

Insert
Create a new, single-node tree and merge as needed, O(1)amortized

Extract-Min
Remove min root, promote its children, and merge as needed, O(lg n)

Priority Queue Comparison

Find Min Extract Min Insert Decrease Key

Binary Heap O(1) O(lg n) O(lg n) O(lg n)

Linked List O(1) O(n) O(1) O(1)

Binomial Heap O(1) O(lg n) O(1) amortized O(lg n)

Fibonacci Heap

16

Priority Queue Comparison

Find Min Extract Min Insert Decrease Key

Binary Heap O(1) O(lg n) O(lg n) O(lg n)

Linked List O(1) O(n) O(1) O(1)

Binomial Heap O(1) O(lg n) O(1) amortized O(lg n)

Fibonacci Heap O(1) O(lg n) amortized O(1) O(1) amortized

Originally created to improve
Dijkstra’s Single Source Shortest

Path Algorithm

O(m + n lg n)

Time to call ”Decrease
Key” for each edge.

Time to call “Extract
Min” on each vertex.

17

Quick Note on Amortized Analysis

• We skipped this lecture, but we might fit it back in later

• Here’s the important part
• If we perform an operation k times, then

Total true cost = O(Amortized cost)

Total true cost ≤ c (Amortized cost) for all n ≥ n0

We might do a lot of work in one call, but this work will benefit later calls

18

Fibonacci Heap, Basic Idea

• Maintain a set of Heaps (not necessarily binomial trees)

• Maintain a pointer to the minimum element
• The minimum element will be the root of one of the heaps

• Maintain a set of “marked” nodes (new concept)

• Lazily add nodes

• Cleanup in batches (more efficient this way) (only on an extract)

19

Fibonacci Heap, Important Operations

• FibPQInsert

• FibPQExtractMin

• FibPQDecreaseKey

20

Fibonacci Heap Details

21

STRUCT HeapNode<T>

 value: T

 key: Comparable

 degree: Integer = 0

 isLoser: Boolean = FALSE

 parent: HeapNode<T> = NONE

 children: List[HeapNode<T>] = []

STRUCT PQ<T>

 heaps: Set[HeapNode<T>] = []

 minNode: HeapNode<T> = NONE

 lookupTable: Dict[T, HeapNode<T>] = {}

22

FUNCTION FibPQInsert(pq, value, key)

 newNode = HeapNode(value, key)

 pq.heaps.add(newNode)

 pq.lookupTable[value] = newNode

 IF newNode.key < pq.minNode.key THEN pq.minNode = newNode

Running Time?

Example

23

FUNCTION FibPQExtractMin(pq)

 # Remove the minimum heap node

 …

 # Promote children

 …

 # Continually merge heaps with the same degree

 …

 # Create new list of root heaps

 …

 # Set the new minimum

 …

 RETURN extractedNode.value

24

FUNCTION FibPQExtractMin(pq)

Remove the minimum heap node

 …

 # Promote children

 …

 # Continually merge heaps with the same degree

 …

 # Create new list of root heaps

 …

 # Set the new minimum

 …

 RETURN extractedNode.value

extractedNode = pq.minNode

pq.heaps.remove(extractedNode)

STRUCT PQ<T>

 heaps: Set[HeapNode<T>] = []

 minNode: HeapNode<T> = NONE

 lookupTable: Dict[T, HeapNode<T>] = {}

25

FUNCTION FibPQExtractMin(pq)

 # Remove the minimum heap node

 …

Promote children

 …

 # Continually merge heaps with the same degree

 …

 # Create new list of root heaps

 …

 # Set the new minimum

 …

 RETURN extractedNode.value

extractedNode = pq.minNode

pq.heaps.remove(extractedNode)

FOR child IN minNode.children

 child.isLoser = FALSE

 pq.heaps.add(child)

STRUCT HeapNode<T>

 value: T

 key: Comparable

 degree: Integer = 0

 isLoser: Boolean = FALSE

 parent: HeapNode<T> = NONE

 children: List[HeapNode<T>] = []

26

FUNCTION FibPQExtractMin(pq)

 # Remove the minimum heap node

 …

 # Promote children

 …

Continually merge heaps with the same degree

 …

 # Create new list of root heaps

 …

 # Set the new minimum

 …

 RETURN extractedNode.value

Continually merge heaps with the same degree

heapsByDegree = [NONE FOR _ IN pq.heaps]

FOR heap IN pq.heaps

 currentHeap = heap

 LOOP

 currentDegree = currentHeap.degree

 BREAK IF heapsByDegree[currentDegree] != NONE

 heapWithSameDegree = heapsByDegree[currentDegree]

 heapsByDegree[currentDegree] = NONE

 # Merge two trees

 IF currentHeap.key < heapWithSameDegree.key

 currentHeap.degree += 1

 currentHeap.children.append(heapWithSameDegree)

 heapWithSameDegree.parent = currentHeap

 ELSE

 heapWithSameDegree.degree += 1

 heapWithSameDegree.children.append(currentHeap)

 currentHeap.parent = heapWithSameDegree

 heapsByDegree[currentDegree] = currentHeap

Same process as for Binomial Heaps

27

FUNCTION FibPQExtractMin(pq)

 # Remove the minimum heap node

 …

 # Promote children

 …

 # Continually merge heaps with the same degree

 …

Create new list of root heaps

 …

 # Set the new minimum

 …

 RETURN extractedNode.value

pq.heaps = [heap FOR heap IN heapsByDegree IF heap != NONE]

extractedNode = pq.minNode

pq.heaps.remove(extractedNode)

FOR child IN minNode.children

 child.isLoser = FALSE

 pq.heaps.add(child)

heapsByDegree = [NONE FOR _ IN pq.heaps]

FOR heap IN pq.heaps

 …

 heapsByDegree[currentDegree] = currentHeap

28

FUNCTION FibPQExtractMin(pq)

 # Remove the minimum heap node

 …

 # Promote children

 …

 # Continually merge heaps with the same degree

 …

 # Create new list of root heaps

 …

Set the new minimum

 …

 RETURN extractedNode.value

extractedNode = pq.minNode

pq.heaps.remove(extractedNode)

FOR child IN minNode.children

 child.isLoser = FALSE

 pq.heaps.add(child)

pq.minNode = pq.heaps[0]

FOR heap IN pq.heaps[1..]

 IF heap.key < pq.minNode.key THEN pq.minNode = heap

pq.heaps = [heap FOR heap IN heapsByDegree IF heap != NONE]

heapsByDegree = [NONE FOR _ IN pq.heaps]

FOR heap IN pq.heaps

 …

 heapsByDegree[currentDegree] = currentHeap

29

FUNCTION FibPQExtractMin(pq)

 # (1) Remove the minimum

 # heap node

 # (2) Promote children

 # (3) Continually merge

 # heaps with the same

 # degree

 # (4) Create new list of

 # root heaps

 # (5) Set the new minimum

 # (6) Return the extracted

 # node

 RETURN extractedNode.value

7 1 5 2

4 4

6

min

31

FUNCTION FibPQDecreaseKey(pq, value, newKey)

 node = pq.lookupTable[value]

 node.key = newKey

 parent = node.parent

 IF parent != NONE && node.key < parent.key

 LOOP

 parent.children.remove(node)

 pq.heaps.add(node)

 IF node.key < pq.minNode.key THEN pq.minNode = node

 node.isLoser = FALSE

 BREAK IF parent == NONE || parent.isLoser == FALSE

 parent = node.parent, node = parent

 IF parent != NONE

 parent.isLoser = TRUE

32

FUNCTION FibPQDecreaseKey(pq, value, newKey)

 node = pq.lookupTable[value]

 node.key = newKey

 parent = node.parent

 IF parent != NONE && node.key < parent.key

 LOOP

 parent.children.remove(node)

 pq.heaps.add(node)

 IF node.key < pq.minNode.key THEN pq.minNode = node

 node.isLoser = FALSE

 BREAK IF parent == NONE || parent.isLoser == FALSE

 parent = node.parent, node = parent

 IF parent != NONE

 parent.isLoser = TRUE

Exercise

33
Example from Damon Wischik at Cambridge University.

Decrease 9 to 6

FUNCTION FibPQDecreaseKey(pq, value, newKey)

 node = pq.lookupTable[value]

 node.key = newKey

 parent = node.parent

 IF parent != NONE && node.key < parent.key

 LOOP

 parent.children.remove(node)

 pq.heaps.add(node)

 IF node.key < pq.minNode.key THEN pq.minNode = node

 node.isLoser = FALSE

 BREAK IF parent == NONE || parent.isLoser == FALSE

 parent = node.parent, node = parent

 IF parent != NONE

 parent.isLoser = TRUE

Loser

Loser

34

IF parent != NONE && node.key < parent.key

 LOOP

 parent.children.remove(node)

 pq.heaps.add(node)

 IF node.key < pq.minNode.key THEN pq.minNode = node

 node.isLoser = FALSE

 BREAK IF parent == NONE || parent.isLoser == FALSE

 parent = node.parent, node = parent

 IF parent != NONE

 parent.isLoser = TRUE

6

node

parent

35

6

IF parent != NONE && node.key < parent.key

 LOOP

 parent.children.remove(node)

 pq.heaps.add(node)

 IF node.key < pq.minNode.key THEN pq.minNode = node

 node.isLoser = FALSE

 BREAK IF parent == NONE || parent.isLoser == FALSE

 parent = node.parent, node = parent

 IF parent != NONE

 parent.isLoser = TRUE

8

node

parent

36

6

IF parent != NONE && node.key < parent.key

 LOOP

 parent.children.remove(node)

 pq.heaps.add(node)

 IF node.key < pq.minNode.key THEN pq.minNode = node

 node.isLoser = FALSE

 BREAK IF parent == NONE || parent.isLoser == FALSE

 parent = node.parent, node = parent

 IF parent != NONE

 parent.isLoser = TRUE

8

node

parent
5

loser

Fibonacci Heap, Important Operations

• FibPQInsert

• FibPQExtractMin

• FibPQDecreaseKey

38

Fibonacci Heaps Insert Running Time

Insert

• All we do is add a single node to the list of heaps and then check to
see if it is the new minimum node

39

Fibonacci Heaps Extract-Min Running Time

Extract-Min

1. Remove the minimum heap node

2. Promote children

3. Continually merge heaps with the same degree

4. Create new list of root heaps

5. Set the new minimum

6. Return the extracted node

40

Which of these are the easiest?

Fibonacci Heaps Extract-Min Running Time

Extract-Min

1. Remove the minimum heap node, O(1)

2. Promote children

3. Continually merge heaps with the same degree

4. Create new list of root heaps

5. Set the new minimum

6. Return the extracted node, O(1)

41

Fibonacci Heaps Extract-Min Running Time

Extract-Min

1. Remove the minimum heap node, O(1)

2. Promote children

3. Continually merge heaps with the same degree

4. Create new list of root heaps

5. Set the new minimum

6. Return the extracted node, O(1)

42

Promote children

• What is the maximum number of children for the minimum?

• It depends on the number of nodes in the Fibonacci heap

• For now, let’s call this dmax

• This is the maximum degree of any node
• Remember that degree denotes the number of direct children of a node
• We’ll figure how an upper bound on dmax later

• Promotion then takes O(dmax)

43

Fibonacci Heaps Extract-Min Running Time

Extract-Min

1. Remove the minimum heap node, O(1)

2. Promote children, O(dmax)

3. Continually merge heaps with the same degree

4. Create new list of root heaps

5. Set the new minimum

6. Return the extracted node, O(1)

44

Continually merge heaps with the same
degree
• With n nodes in the Fibonacci heap, what is the maximum number of

merges we can perform?

• O(n)

• This seems like we will do O(n) work to perform the Extract-Min operation!

• However, we very rarely perform O(n) merges

• An amortized analysis tells us that the aggregate cost of this operation is
actually O(lg n)

45
I have provided some resources on the course website, but we’ll skip the analysis for now.

For example, if we have a bunch of singleton heaps.

Fibonacci Heaps Extract-Min Running Time

Extract-Min

1. Remove the minimum heap node, O(1)

2. Promote children, O(dmax)

3. Continually merge heaps with the same degree, O(lg n)

4. Create new list of root heaps

5. Set the new minimum

6. Return the extracted node, O(1)

46

47

FUNCTION FibPQExtractMin(pq)

 # Remove the minimum heap node

 …

 # Promote children

 …

 # Continually merge heaps with the same degree

 …

Create new list of root heaps

 …

Set the new minimum

 …

 RETURN extractedNode.value

pq.heaps = [heap FOR heap IN heapsByDegree IF heap != NONE]

pq.minNode = pq.heaps[0]

FOR heap IN pq.heaps[1..]

 IF heap.key < pq.minNode.key THEN pq.minNode = heap

Fibonacci Heaps Extract-Min Running Time

Extract-Min

1. Remove the minimum heap node, O(1)

2. Promote children, O(dmax)

3. Continually merge heaps with the same degree, O(lg n)amortized

4. Create new list of root heaps, O(dmax)

5. Set the new minimum, O(dmax)

6. Return the extracted node, O(1)

48

We’ll come back to dmax in a bit!

Fibonacci Heaps Decrease-Key Running Time

Decrease-Key

1. Change key in constant time

2. Two cases
1. If there is no heap violation, then we are done

2. If there is a heap violation, then we recursively
1. Promote the node

2. Check if the parent is a double loser
1. If the parent is not a loser, then we mark it as a loser and we are done

2. Otherwise, we continue to “promote the node” with parent as the current node

49

Fibonacci Heaps Decrease-Key Running Time

Decrease-Key

1. Change key in constant time

2. Two cases
1. If there is no heap violation, then we are done

2. If there is a heap violation, then we recursively
1. Promote the node

2. Check if the parent is a double loser
1. If the parent is not a loser, then we mark it as a loser and we are done

2. Otherwise, we continue to “promote the node” with parent as the current node

50

What is the running time of this path?

Fibonacci Heaps Decrease-Key Running Time

Decrease-Key

1. Change key in constant time

2. Two cases
1. If there is no heap violation, then we are done

2. If there is a heap violation, then we recursively
1. Promote the node

2. Check if the parent is a double loser
1. If the parent is not a loser, then we mark it as a loser and we are done

2. Otherwise, we continue to “promote the node” with parent as the current node

51

What is the running time of this path?

An amortized analysis will give us a running time of O(1)amortized

It appears to be O(lg n)

Losers, dmax , and Naming Rights

• We only merge trees with the same degree

• Looking at a single tree with degree d, you’ll see that
• The leftmost child has degree d-1
• The second from the left has degree d-2
• The third from the left has degree d-3
• And so on
• The rightmost child has degree 0

• If a node loses one child, then we have the same basic structure

• If a node loses two children, then it is kicked out of the tree

53

Losers, dmax , and Naming Rights

54

Summary

• Fibonacci Heaps are based on the idea of lazy cleanup

• We don’t fix the binomial trees until we can fix a bunch at the same
time

• We need amortized analysis to show a more useful running time
(instead of a worst-case running time)

57

Find Min Extract Min Insert Decrease Key

Binary Heap O(1) O(lg n) O(lg n) O(lg n)

Binomial Heap O(1) O(lg n) O(1) amortized O(lg n)

Linked List O(1) O(n) O(1) O(1)

Fibonacci Heap O(1) O(lg n) amortized O(1) O(1) amortized

	Slide 2: Fibonacci Heaps
	Slide 3: Outline
	Slide 4: Extra Resources
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Dijkstra’s Reminders
	Slide 9: Priority Queue Types
	Slide 10: Binary Heap Priority Queue
	Slide 11: Linked List Priority Queue
	Slide 12: Binomial Heap Priority Queue
	Slide 13: Binomial Heap Priority Queue
	Slide 14
	Slide 16: Priority Queue Comparison
	Slide 17: Priority Queue Comparison
	Slide 18: Quick Note on Amortized Analysis
	Slide 19: Fibonacci Heap, Basic Idea
	Slide 20: Fibonacci Heap, Important Operations
	Slide 21: Fibonacci Heap Details
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38: Fibonacci Heap, Important Operations
	Slide 39: Fibonacci Heaps Insert Running Time
	Slide 40: Fibonacci Heaps Extract-Min Running Time
	Slide 41: Fibonacci Heaps Extract-Min Running Time
	Slide 42: Fibonacci Heaps Extract-Min Running Time
	Slide 43: Promote children
	Slide 44: Fibonacci Heaps Extract-Min Running Time
	Slide 45: Continually merge heaps with the same degree
	Slide 46: Fibonacci Heaps Extract-Min Running Time
	Slide 47
	Slide 48: Fibonacci Heaps Extract-Min Running Time
	Slide 49: Fibonacci Heaps Decrease-Key Running Time
	Slide 50: Fibonacci Heaps Decrease-Key Running Time
	Slide 51: Fibonacci Heaps Decrease-Key Running Time
	Slide 53: Losers, dmax , and Naming Rights
	Slide 54: Losers, dmax , and Naming Rights
	Slide 57: Summary

