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Outline

Topics and Learning Objectives

• Discuss Fibonacci Heaps

• Understand the benefits of Fibonacci Heaps

• Analyze the amortized running time of Fibonacci Heaps

Exercise

• Fibonacci Heap practice
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Extra Resources

• https://www.cl.cam.ac.uk/teaching/2021/Algorithms/notes2.pdf
• Section 7
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https://www.cl.cam.ac.uk/teaching/2021/Algorithms/notes2.pdf
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What edges does Dijkstra’s Algorithm consider in the current iteration?
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Dijkstra’s Reminders

During each iteration we need to:

1. Find the vertex v that
• Is reachable from the start vertex using the vertices found so far

• Has the minimal path length from the start vertex among all options

2. Update the possible paths lengths of all vertices connected to v

Extract Min

Decrease Key
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Priority Queue Types

• Binary Heap Priority Queue

• Binomial Heap Priority Queue

• Linked List Priority Queue

• Fibonacci Heap Priority Queue
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Binary Heap Priority Queue

• An almost-full (complete) binary tree

• Satisfies the heap property

Insert

• Add to the end and bubble up, O(lg n)

Extract-Min

• Replace root with last node and bubble down, O(lg n)

Decrease-Key

• Change key and bubble up, O(lg n)
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Linked List Priority Queue

• A normal, doubly linked-list

• Really, nothing special but good for comparison

Insert

• Add to the end and update min pointer if needed, O(1)

Extract-Min

• Remove the min node, then find the new min node, O(n)

Decrease-Key

• Change key and update min pointer if needed, O(1)
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Binomial Heap Priority Queue

• Uses a forest of binomial trees with no more than one tree of each degree

• Maintaining the binomial forest property
1. A single node (a tree with degree 0)

2. Two trees of degree 0 can be merged (degree 1)

3. Two trees of degree 1 can be merged (degree 2)

4. Two trees of degree 2 can be merged

5. …

• Degree denotes a node’s number of children

• Merge by making one tree a child of the other
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Binomial Heap Priority Queue

• Uses a forest of binomial trees, each satisfies the heap property

• At most one tree of each degree

Insert

• Create a new, single-node tree and merge as needed, O(1)amortized

Extract-Min

• Remove min root, promote its children, and merge as needed, O(lg n)

Decrease-Key

• Change key and bubble up, O(lg n)
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You don’t need to 
understand the details; 

we just want to compare 
with a Fibonacci Heap
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Example Binomial Heap

Operations:
- Insert 10
- Insert 16
- Insert 12
- Insert 14
- Insert 8
- Insert 17
- Insert 20
- Extract-Min
- Extract-Min

At most one tree of each degree

Insert
Create a new, single-node tree and merge as needed, O(1)amortized

Extract-Min
Remove min root, promote its children, and merge as needed, O(lg n)



Priority Queue Comparison

Find Min Extract Min Insert Decrease Key

Binary Heap O(1) O(lg n) O(lg n) O(lg n)

Linked List O(1) O(n) O(1) O(1)

Binomial Heap O(1) O(lg n) O(1) amortized O(lg n)

Fibonacci Heap
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Priority Queue Comparison

Find Min Extract Min Insert Decrease Key

Binary Heap O(1) O(lg n) O(lg n) O(lg n)

Linked List O(1) O(n) O(1) O(1)

Binomial Heap O(1) O(lg n) O(1) amortized O(lg n)

Fibonacci Heap O(1) O(lg n) amortized O(1) O(1) amortized

Originally created to improve 
Dijkstra’s Single Source Shortest 

Path Algorithm

O(m + n lg n)

Time to call ”Decrease 
Key” for each edge.

Time to call “Extract 
Min” on each vertex.
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Quick Note on Amortized Analysis

• We skipped this lecture, but we might fit it back in later

• Here’s the important part
• If we perform an operation k times, then

Total true cost = O(Amortized cost)

Total true cost ≤ c (Amortized cost) for all n ≥ n0

We might do a lot of work in one call, but this work will benefit later calls
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Fibonacci Heap, Basic Idea

• Maintain a set of Heaps (not necessarily binomial trees)

• Maintain a pointer to the minimum element
• The minimum element will be the root of one of the heaps

• Maintain a set of “marked” nodes (new concept)

• Lazily add nodes

• Cleanup in batches (more efficient this way) (only on an extract)
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Fibonacci Heap, Important Operations

• FibPQInsert

• FibPQExtractMin

• FibPQDecreaseKey
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Fibonacci Heap Details

21

STRUCT HeapNode<T>

 value: T

 key: Comparable

 degree: Integer = 0

 isLoser: Boolean = FALSE

 parent: HeapNode<T> = NONE

 children: List[HeapNode<T>] = []

STRUCT PQ<T>

 heaps: Set[HeapNode<T>] = []

 minNode: HeapNode<T> = NONE

 lookupTable: Dict[T, HeapNode<T>] = {}
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FUNCTION FibPQInsert(pq, value, key)

 newNode = HeapNode(value, key)

 pq.heaps.add(newNode)

 pq.lookupTable[value] = newNode

 IF newNode.key < pq.minNode.key THEN pq.minNode = newNode

Running Time?

Example
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FUNCTION FibPQExtractMin(pq)

 # Remove the minimum heap node

 …

 # Promote children

 …

 # Continually merge heaps with the same degree

 …

 # Create new list of root heaps

 …

 # Set the new minimum

 …

 RETURN extractedNode.value
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FUNCTION FibPQExtractMin(pq)

# Remove the minimum heap node

 …

 # Promote children

 …

 # Continually merge heaps with the same degree

 …

 # Create new list of root heaps

 …

 # Set the new minimum

 …

 RETURN extractedNode.value

extractedNode = pq.minNode

pq.heaps.remove(extractedNode)

STRUCT PQ<T>

 heaps: Set[HeapNode<T>] = []

 minNode: HeapNode<T> = NONE

 lookupTable: Dict[T, HeapNode<T>] = {}
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FUNCTION FibPQExtractMin(pq)

 # Remove the minimum heap node

 …

# Promote children

 …

 # Continually merge heaps with the same degree

 …

 # Create new list of root heaps

 …

 # Set the new minimum

 …

 RETURN extractedNode.value

extractedNode = pq.minNode

pq.heaps.remove(extractedNode)

FOR child IN minNode.children

  child.isLoser = FALSE

  pq.heaps.add(child)

STRUCT HeapNode<T>

 value: T

 key: Comparable

 degree: Integer = 0

 isLoser: Boolean = FALSE

 parent: HeapNode<T> = NONE

 children: List[HeapNode<T>] = []
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FUNCTION FibPQExtractMin(pq)

 # Remove the minimum heap node

 …

 # Promote children

 …

# Continually merge heaps with the same degree

 …

 # Create new list of root heaps

 …

 # Set the new minimum

 …

 RETURN extractedNode.value

# Continually merge heaps with the same degree

heapsByDegree = [NONE FOR _ IN pq.heaps]

FOR heap IN pq.heaps

 currentHeap = heap

 LOOP

   currentDegree = currentHeap.degree

   BREAK IF heapsByDegree[currentDegree] != NONE

   heapWithSameDegree = heapsByDegree[currentDegree]

   heapsByDegree[currentDegree] = NONE

   # Merge two trees

   IF currentHeap.key < heapWithSameDegree.key

    currentHeap.degree += 1

    currentHeap.children.append(heapWithSameDegree)

    heapWithSameDegree.parent = currentHeap

   ELSE

    heapWithSameDegree.degree += 1

    heapWithSameDegree.children.append(currentHeap)

    currentHeap.parent = heapWithSameDegree

 heapsByDegree[currentDegree] = currentHeap

Same process as for Binomial Heaps
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FUNCTION FibPQExtractMin(pq)

 # Remove the minimum heap node

 …

 # Promote children

 …

 # Continually merge heaps with the same degree

 …

# Create new list of root heaps

 …

 # Set the new minimum

 …

 RETURN extractedNode.value

pq.heaps = [heap FOR heap IN heapsByDegree IF heap != NONE]

extractedNode = pq.minNode

pq.heaps.remove(extractedNode)

FOR child IN minNode.children

  child.isLoser = FALSE

  pq.heaps.add(child)

heapsByDegree = [NONE FOR _ IN pq.heaps]

FOR heap IN pq.heaps

   …

 heapsByDegree[currentDegree] = currentHeap
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FUNCTION FibPQExtractMin(pq)

 # Remove the minimum heap node

 …

 # Promote children

 …

 # Continually merge heaps with the same degree

 …

 # Create new list of root heaps

 …

# Set the new minimum

 …

 RETURN extractedNode.value

extractedNode = pq.minNode

pq.heaps.remove(extractedNode)

FOR child IN minNode.children

  child.isLoser = FALSE

  pq.heaps.add(child)

pq.minNode = pq.heaps[0]

FOR heap IN pq.heaps[1..]

 IF heap.key < pq.minNode.key THEN pq.minNode = heap

pq.heaps = [heap FOR heap IN heapsByDegree IF heap != NONE]

heapsByDegree = [NONE FOR _ IN pq.heaps]

FOR heap IN pq.heaps

   …

 heapsByDegree[currentDegree] = currentHeap
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FUNCTION FibPQExtractMin(pq)

 # (1) Remove the minimum 

   # heap node

 # (2) Promote children

 # (3) Continually merge

   # heaps with the same

   # degree

 # (4) Create new list of

   # root heaps

 # (5) Set the new minimum

 # (6) Return the extracted

   # node

 RETURN extractedNode.value

7 1 5 2

4 4

6

min
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FUNCTION FibPQDecreaseKey(pq, value, newKey)

 node = pq.lookupTable[value]

 node.key = newKey

 parent = node.parent

 IF parent != NONE && node.key < parent.key

   LOOP

    parent.children.remove(node)

    pq.heaps.add(node)

    IF node.key < pq.minNode.key THEN pq.minNode = node

    node.isLoser = FALSE

    BREAK IF parent == NONE || parent.isLoser == FALSE

    parent = node.parent, node = parent

   IF parent != NONE

    parent.isLoser = TRUE
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FUNCTION FibPQDecreaseKey(pq, value, newKey)

 node = pq.lookupTable[value]

 node.key = newKey

 parent = node.parent

 IF parent != NONE && node.key < parent.key

   LOOP

    parent.children.remove(node)

    pq.heaps.add(node)

    IF node.key < pq.minNode.key THEN pq.minNode = node

    node.isLoser = FALSE

    BREAK IF parent == NONE || parent.isLoser == FALSE

    parent = node.parent, node = parent

   IF parent != NONE

    parent.isLoser = TRUE

Exercise 
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Example from Damon Wischik at Cambridge University.

Decrease 9 to 6

FUNCTION FibPQDecreaseKey(pq, value, newKey)

 node = pq.lookupTable[value]

 node.key = newKey

 parent = node.parent

 IF parent != NONE && node.key < parent.key

   LOOP

    parent.children.remove(node)

    pq.heaps.add(node)

    IF node.key < pq.minNode.key THEN pq.minNode = node

    node.isLoser = FALSE

    BREAK IF parent == NONE || parent.isLoser == FALSE

    parent = node.parent, node = parent

   IF parent != NONE

    parent.isLoser = TRUE

Loser

Loser
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IF parent != NONE && node.key < parent.key

   LOOP

    parent.children.remove(node)

    pq.heaps.add(node)

    IF node.key < pq.minNode.key THEN pq.minNode = node

    node.isLoser = FALSE

    BREAK IF parent == NONE || parent.isLoser == FALSE

    parent = node.parent, node = parent

   IF parent != NONE

    parent.isLoser = TRUE

6

node

parent
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6

IF parent != NONE && node.key < parent.key

   LOOP

    parent.children.remove(node)

    pq.heaps.add(node)

    IF node.key < pq.minNode.key THEN pq.minNode = node

    node.isLoser = FALSE

    BREAK IF parent == NONE || parent.isLoser == FALSE

    parent = node.parent, node = parent

   IF parent != NONE

    parent.isLoser = TRUE

8

node

parent
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6

IF parent != NONE && node.key < parent.key

   LOOP

    parent.children.remove(node)

    pq.heaps.add(node)

    IF node.key < pq.minNode.key THEN pq.minNode = node

    node.isLoser = FALSE

    BREAK IF parent == NONE || parent.isLoser == FALSE

    parent = node.parent, node = parent

   IF parent != NONE

    parent.isLoser = TRUE

8

node

parent
5

loser



Fibonacci Heap, Important Operations

• FibPQInsert

• FibPQExtractMin

• FibPQDecreaseKey
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Fibonacci Heaps Insert Running Time

Insert

• All we do is add a single node to the list of heaps and then check to 
see if it is the new minimum node
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Fibonacci Heaps Extract-Min Running Time

Extract-Min

1. Remove the minimum heap node

2. Promote children

3. Continually merge heaps with the same degree

4. Create new list of root heaps

5. Set the new minimum

6. Return the extracted node

40

Which of these are the easiest?



Fibonacci Heaps Extract-Min Running Time

Extract-Min

1. Remove the minimum heap node, O(1)

2. Promote children

3. Continually merge heaps with the same degree

4. Create new list of root heaps

5. Set the new minimum

6. Return the extracted node, O(1)
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Fibonacci Heaps Extract-Min Running Time

Extract-Min

1. Remove the minimum heap node, O(1)

2. Promote children

3. Continually merge heaps with the same degree

4. Create new list of root heaps

5. Set the new minimum

6. Return the extracted node, O(1)
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Promote children

• What is the maximum number of children for the minimum?

• It depends on the number of nodes in the Fibonacci heap

• For now, let’s call this dmax

• This is the maximum degree of any node
• Remember that degree denotes the number of direct children of a node
• We’ll figure how an upper bound on dmax later

• Promotion then takes O(dmax)
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Fibonacci Heaps Extract-Min Running Time

Extract-Min

1. Remove the minimum heap node, O(1)

2. Promote children, O(dmax)

3. Continually merge heaps with the same degree

4. Create new list of root heaps

5. Set the new minimum

6. Return the extracted node, O(1)
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Continually merge heaps with the same 
degree
• With n nodes in the Fibonacci heap, what is the maximum number of 

merges we can perform?

• O(n)

• This seems like we will do O(n) work to perform the Extract-Min operation!

• However, we very rarely perform O(n) merges

• An amortized analysis tells us that the aggregate cost of this operation is 
actually O(lg n)

45
I have provided some resources on the course website, but we’ll skip the analysis for now.

For example, if we have a bunch of singleton heaps.



Fibonacci Heaps Extract-Min Running Time

Extract-Min

1. Remove the minimum heap node, O(1)

2. Promote children, O(dmax)

3. Continually merge heaps with the same degree, O(lg n)

4. Create new list of root heaps

5. Set the new minimum

6. Return the extracted node, O(1)
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FUNCTION FibPQExtractMin(pq)

 # Remove the minimum heap node

 …

 # Promote children

 …

 # Continually merge heaps with the same degree

 …

# Create new list of root heaps

 …

# Set the new minimum

 …

 RETURN extractedNode.value

pq.heaps = [heap FOR heap IN heapsByDegree IF heap != NONE]

pq.minNode = pq.heaps[0]

FOR heap IN pq.heaps[1..]

 IF heap.key < pq.minNode.key THEN pq.minNode = heap



Fibonacci Heaps Extract-Min Running Time

Extract-Min

1. Remove the minimum heap node, O(1)

2. Promote children, O(dmax)

3. Continually merge heaps with the same degree, O(lg n)amortized

4. Create new list of root heaps, O(dmax)

5. Set the new minimum, O(dmax)

6. Return the extracted node, O(1)
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We’ll come back to dmax in a bit!



Fibonacci Heaps Decrease-Key Running Time

Decrease-Key

1. Change key in constant time

2. Two cases
1. If there is no heap violation, then we are done

2. If there is a heap violation, then we recursively
1. Promote the node

2. Check if the parent is a double loser
1. If the parent is not a loser, then we mark it as a loser and we are done

2. Otherwise, we continue to “promote the node” with parent as the current node
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Fibonacci Heaps Decrease-Key Running Time

Decrease-Key

1. Change key in constant time

2. Two cases
1. If there is no heap violation, then we are done

2. If there is a heap violation, then we recursively
1. Promote the node

2. Check if the parent is a double loser
1. If the parent is not a loser, then we mark it as a loser and we are done

2. Otherwise, we continue to “promote the node” with parent as the current node

50

What is the running time of this path?



Fibonacci Heaps Decrease-Key Running Time

Decrease-Key

1. Change key in constant time

2. Two cases
1. If there is no heap violation, then we are done

2. If there is a heap violation, then we recursively
1. Promote the node

2. Check if the parent is a double loser
1. If the parent is not a loser, then we mark it as a loser and we are done

2. Otherwise, we continue to “promote the node” with parent as the current node

51

What is the running time of this path?

An amortized analysis will give us a running time of O(1)amortized

It appears to be O(lg n)



Losers, dmax , and Naming Rights

• We only merge trees with the same degree

• Looking at a single tree with degree d, you’ll see that
• The leftmost child has degree d-1
• The second from the left has degree d-2
• The third from the left has degree d-3
• And so on
• The rightmost child has degree 0

• If a node loses one child, then we have the same basic structure

• If a node loses two children, then it is kicked out of the tree
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Losers, dmax , and Naming Rights
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Summary

• Fibonacci Heaps are based on the idea of lazy cleanup

• We don’t fix the binomial trees until we can fix a bunch at the same 
time

• We need amortized analysis to show a more useful running time 
(instead of a worst-case running time)

57

Find Min Extract Min Insert Decrease Key

Binary Heap O(1) O(lg n) O(lg n) O(lg n)

Binomial Heap O(1) O(lg n) O(1) amortized O(lg n)

Linked List O(1) O(n) O(1) O(1)

Fibonacci Heap O(1) O(lg n) amortized O(1) O(1) amortized
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