Learning Communities

- About 8 per group
- Meet with your TA twice per week for 1 hour each time
- Fill out the survey posted on slack!

Closest Pair Algorithm

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Learn more about Divide and Conquer paradigm
- Learn about the closest-pair problem and its O(n lg n) algorithm
 - Gain experience analyzing the run time of algorithms
 - Gain experience proving the correctness of algorithms

Exercise

Closest Pair

Extra Resources

• Algorithms Illuminated: Part 1: Chapter 3

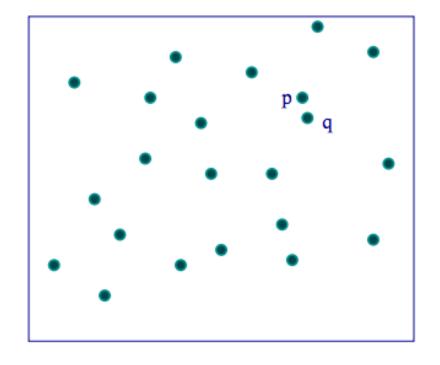
Closest Pair Problem

- Input: P, a set of n points that lie in a (two-dimensional) plane
- Output: a pair of points (p, q) that are the "closest"
 - Distance is measured using Euclidean distance:

$$d(p, q) = sqrt((p_x - q_x)^2 + (p_y - q_y)^2) = t(n) = x$$

Assumptions: None

Closest Pair Problem



Can we do better than O(n²)?

- What is the brute force method for this search?
- What is the asymptotic running time of the brute force method?

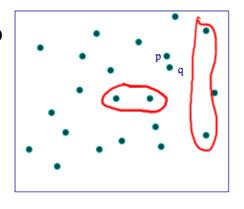
One-dimensional closest pair

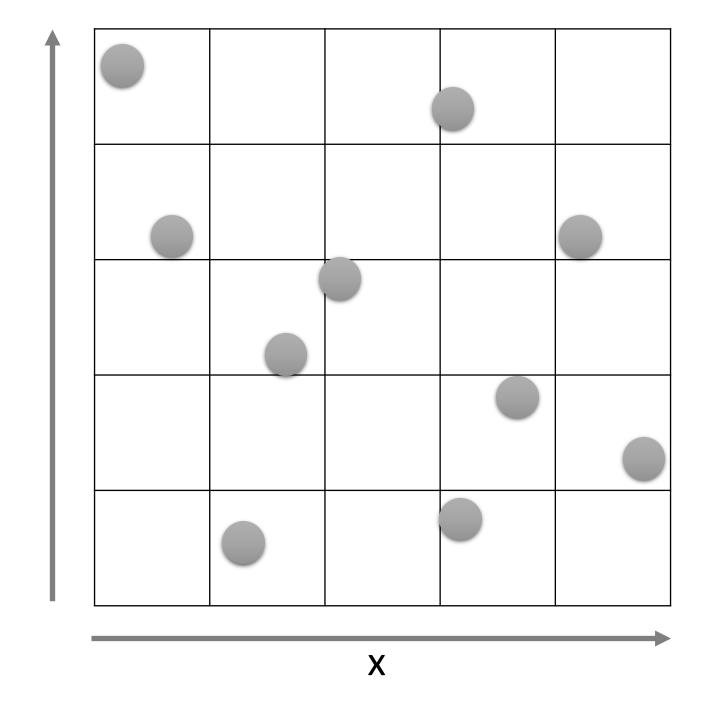
How would you find the closest two points?

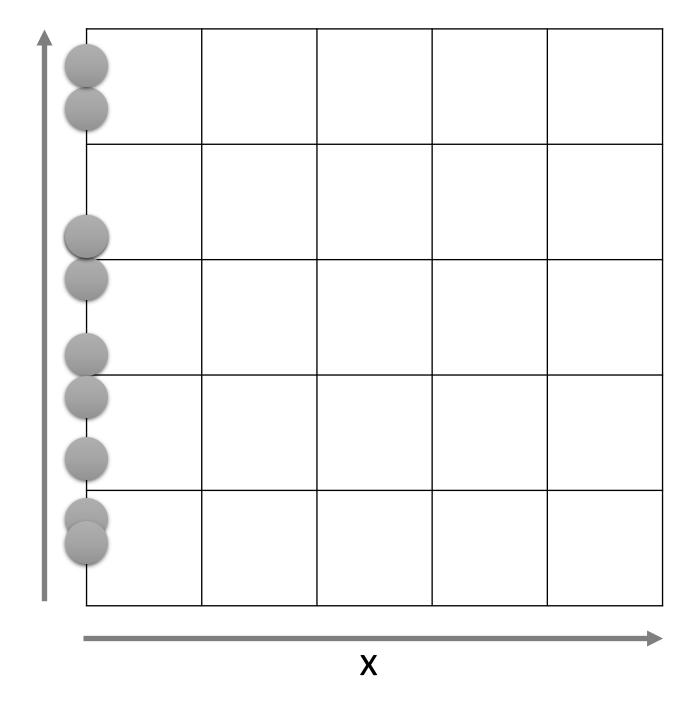
- Sort by position : O(n lg n) p6 p4 p1 p3 p5 p7 p2
- Return the closest two using a linear scan : O(n)
- Total time : $O(n \lg n) + O(n) = O(n \lg n)$

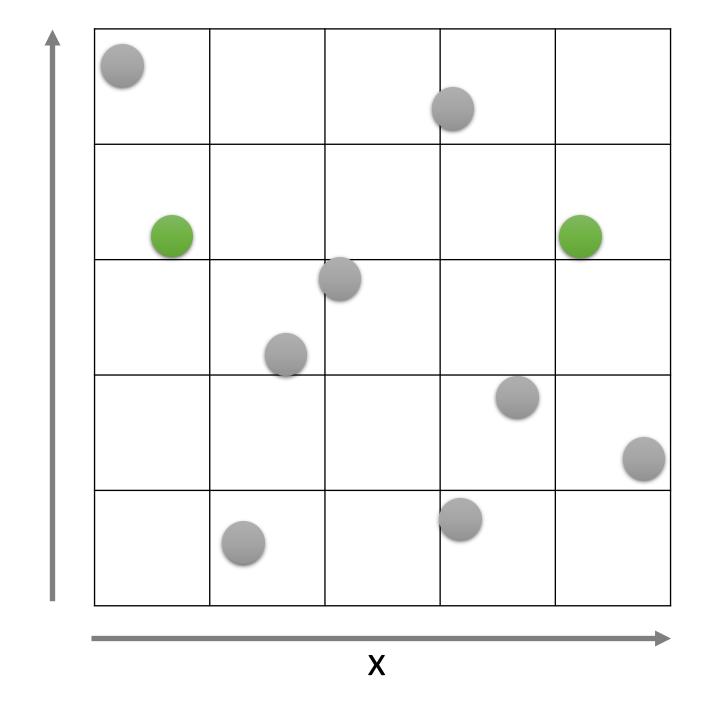
Any problems using this approach for the two-dimensional case?

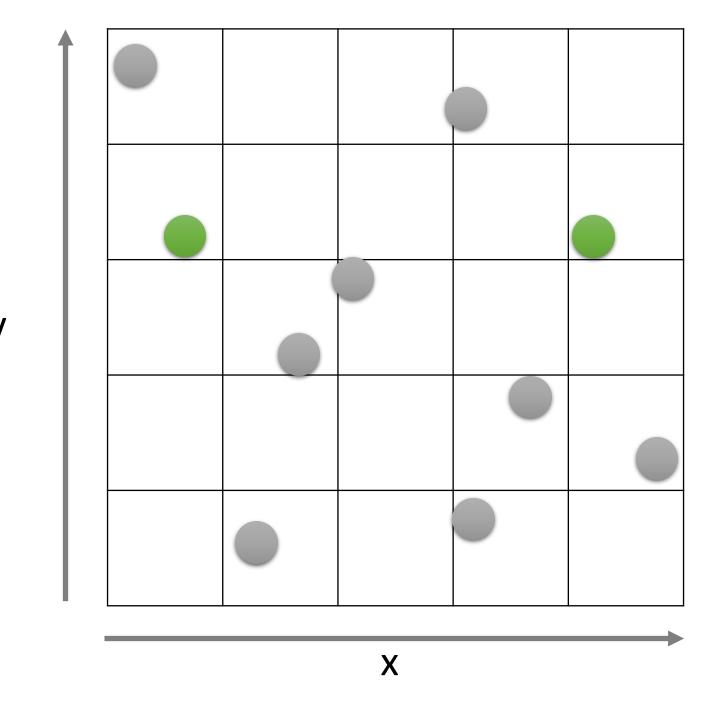
- Sorting does not generalize to higher dimensions!
- How do you sort the points?



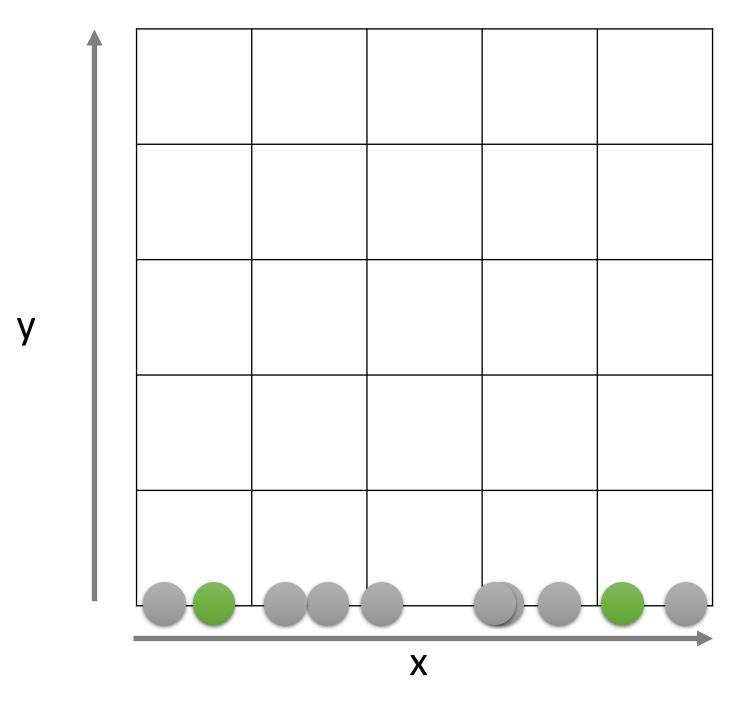




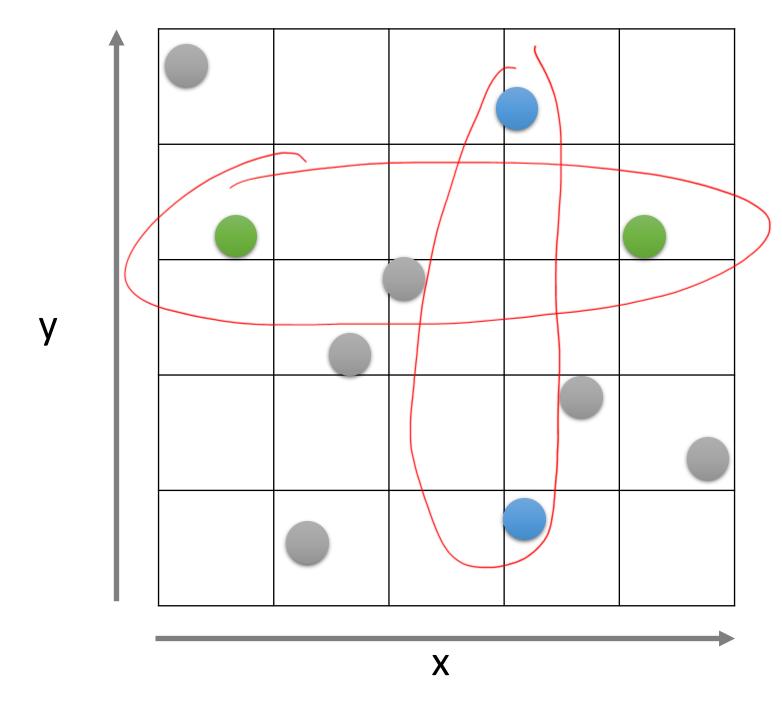




- 1. Which two are closest on the y-axis?
- 2. Which two are closest on the x-axis?

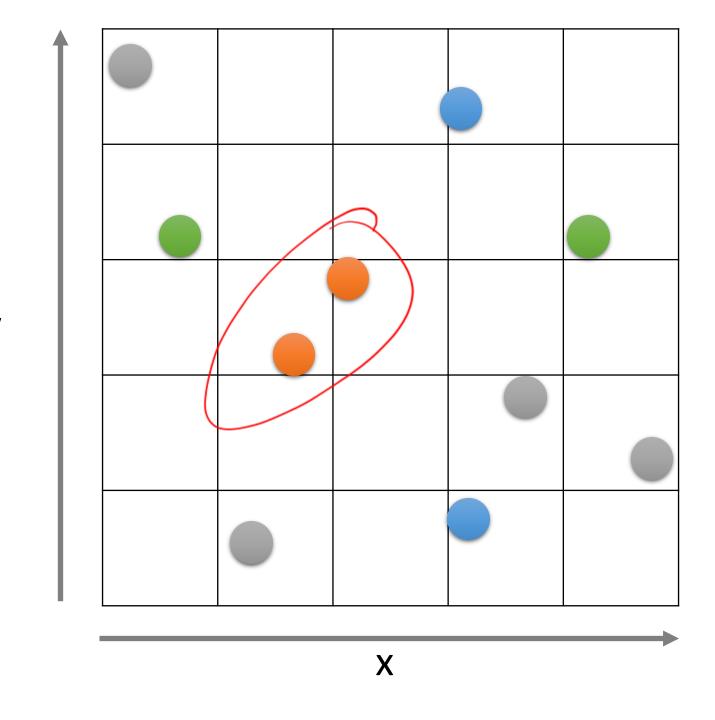


- 1. Which two are closest on the y-axis?
- 2. Which two are closest on the x-axis?



2. Which two are closest on the x-axis?

3. Which two are closest?



- 1. Which two are closest on the y-axis?
- 2. Which two are closest on the x-axis?
- 3. Which two are closest?

Closet Pair—Two-Dimensions

- 1. Create a copy of the points (we now have two separate copies of P)
 - 1. Sort by x-coordinate
 - 2. Sort other by y-coordinate

$$O(n \log n) \leq T(n) \leq O(n^2)$$

Now we know we can't do better than O(n lg n)

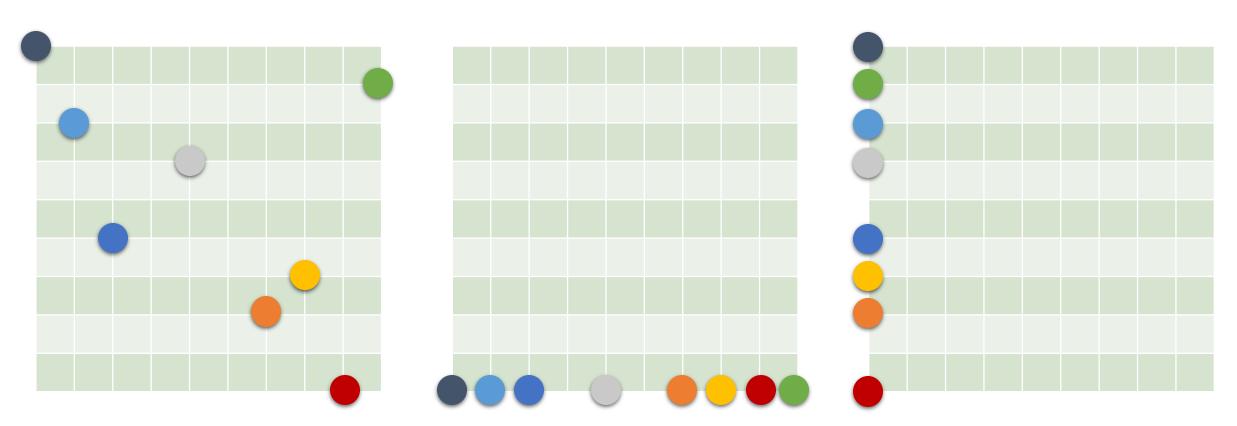
P: [p0(1,10), p1(2,8), p2(7,3), p3(5,7), p4(8,4), p5(3,5), p6(10,9), p7(9,1)]

Sorted by x coordinate

Px : [p0(1,10), p1(2,8), p5(3,5), p3(5,7), p2(7,3), p4(8,4), p7(9,1), p6(10,9)]

Sorted by y coordinate

Py: [p7(9,1), p2(7,3), p4(8,4), p5(3,5), p3(5,7), p1(2,8), p6(10,9), p0(1,10)]



Closet Pair—Two-Dimensions

- 1. Create a copy of the points (we now have two separate copies of P)
 - 1. Sort by x-coordinate
 - 2. Sort other by y-coordinate

- Can we still end up with a O(n lg n) algorithm for finding the closest pair?
- Does the closeness of two points on one axis matter?

tPI V

- FUNCTION FindClosestPair(points)
- 2. points_x = copy_and_sort_by_x(points)
- 3. points_y = copy_and_sort_by_y(points)
- 4. **RETURN** Close tPair (points x points y)

Divide & Conquer

Preprocessing steps

Recursive procedure

Closet Pair—Two-Dimensions

- 1. Create a copy of the points (we now have two separate copies of P)
 - 1. Sort by x-coordinate
 - 2. Sort other by y-coordinate

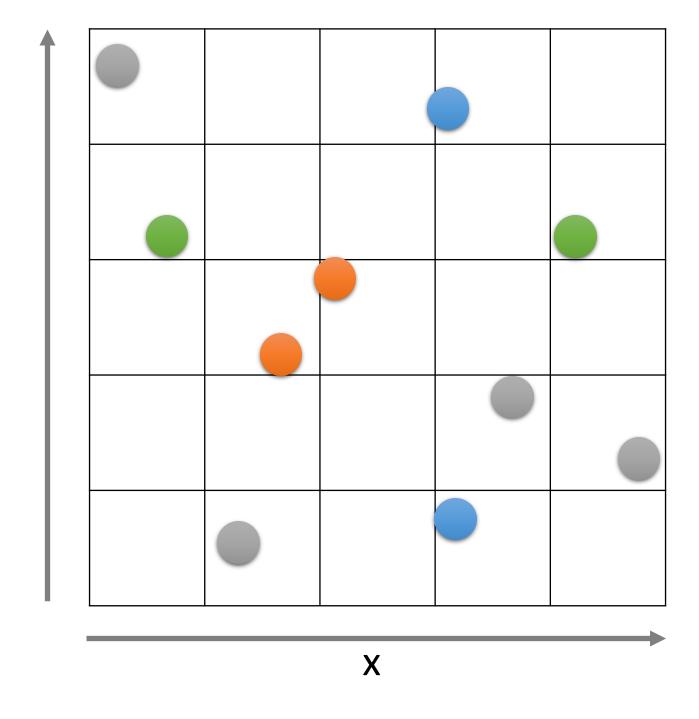
- Can we still end up with a O(n lg n) algorithm for finding the closest pair?
- Does the closeness of two points on one axis matter?

2. Apply the Divide-and-Conquer method

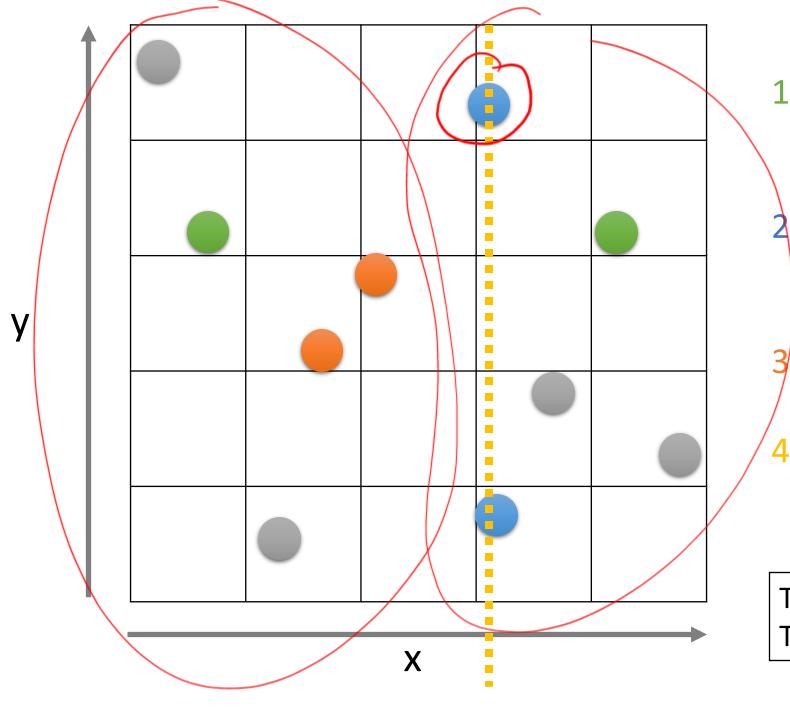
Divide-and-Conquer

- 1. DIVIDE into smaller subproblems
- 2. CONQUER (solve) the subproblems via recursive calls
- 3. COMBINE solutions from the subproblems

• How would you divide the problems?



- 1. Which two are closest on the y-axis?
- 2. Which two are closest on the x-axis?
- 3. Which two are closest?
- 4. How would you divide the search space?(Give me a simple heuristic.)

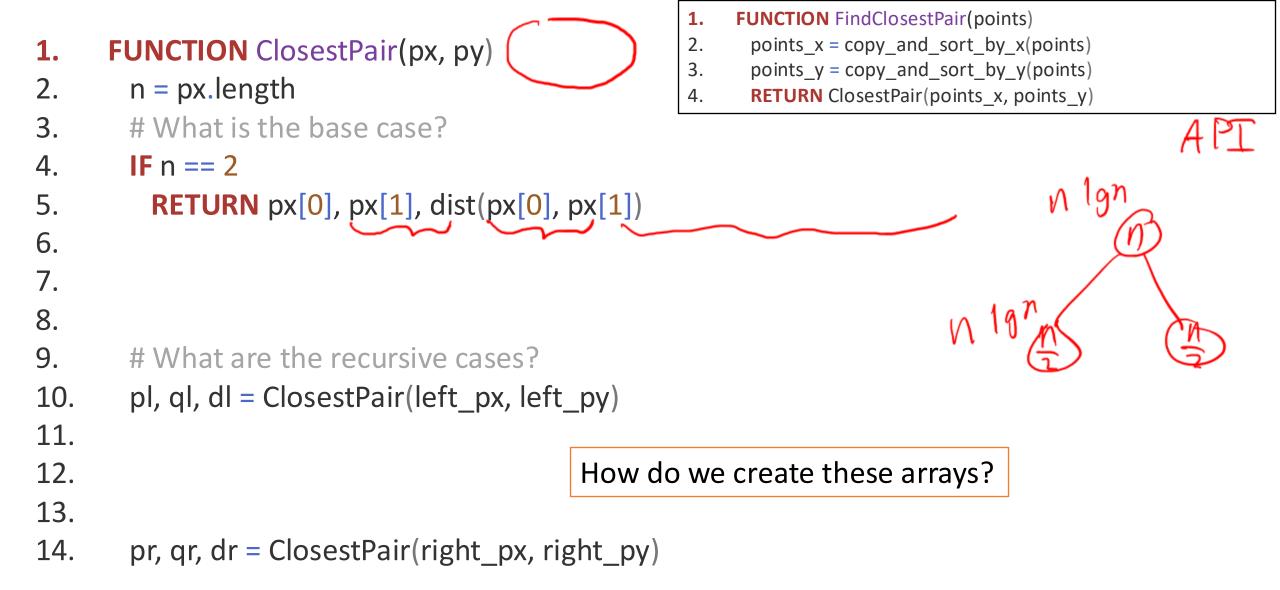


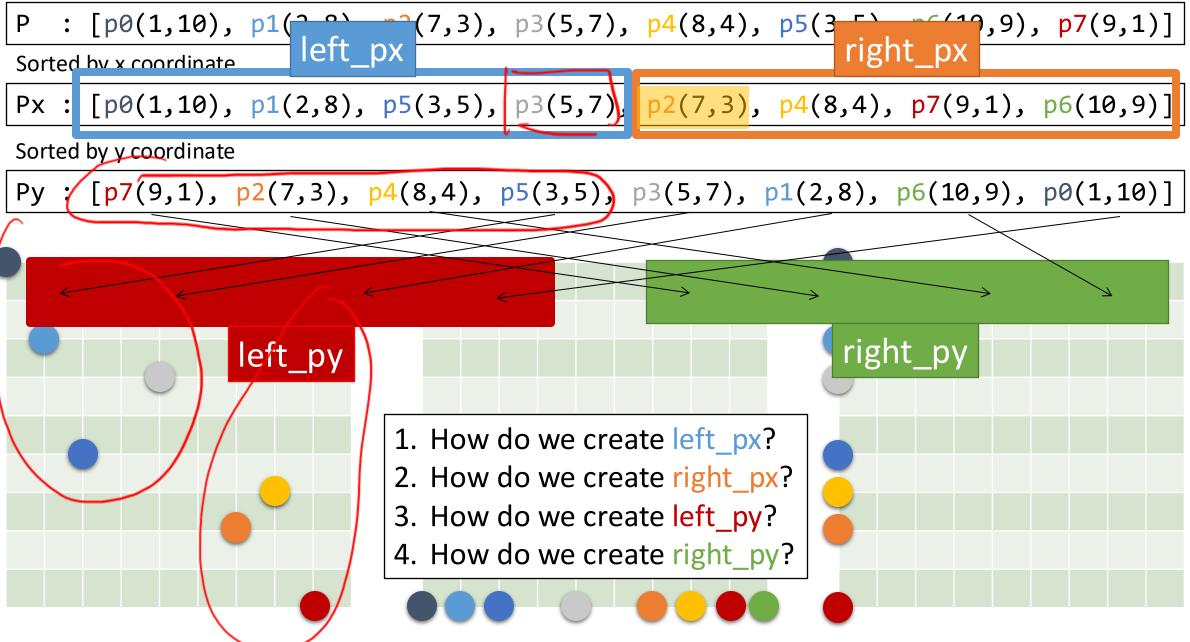
2. Which two are closest on the x-axis?

3. Which two are closest?

4. How would you divide the search space?

This is the median x-value
This is not the average x-value





```
1.
     FUNCTION ClosestPair(px, py)
       n = px.length
3.
       IF n == 2
```

4. **RETURN**
$$px[0]$$
, $px[1]$, $dist(px[0], px[1])$

5. $left_px = px[0 ..< n//2]$ 6.

7.
$$\int e^{ft} py = [p FOR p IN py IF p.x < px[n]/2].x$$

- pl, ql, dl = ClosestPair(left_px, left_py) 8.
- 10. right_px = px[n//2 ..< n]

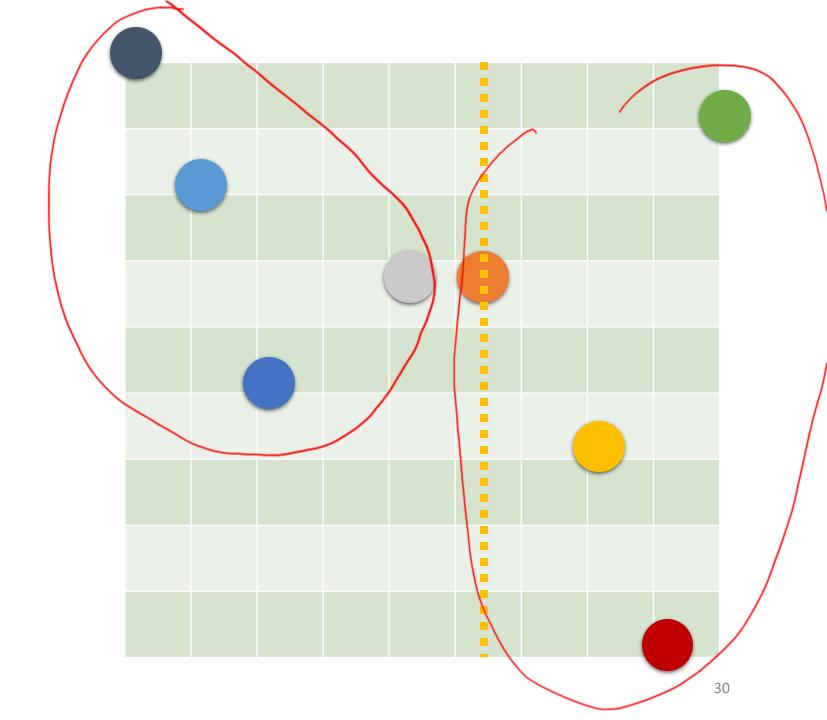
9.

- right_py = [p FOR p IN py IF p.x \geq px[n//2].x] 11.
- 12. pr, qr, dr = ClosestPair(right_px, right_py)

for What is the running time of these operations? Left-py append(p)

Median x value

Any problems with our current approach?



```
1.
      FUNCTION ClosestPair(px, py)
2.
       n = px.length
3.
       IF n == 2
         RETURN px[0], px[1], dist(px[0], px[1])
4.
5.
6.
       left px = px[0 ..< n//2]
7.
       left_py = [p FOR p IN py IF p.x < px[n//2].x]
       pl, ql, dl = ClosestPair(left_px, left_py)
8.
9.
10.
       right px = px[n//2 ..< n]
11.
       right_py = [p FOR p IN py IF p.x \geq px[n//2].x]
       pr, qr, dr = ClosestPair(right_px, right_py)
12.
13.
14.
       d = min(dl, dr)
15.
       ps, qs, ds = ClosestSplitPair(px, py, d)
16.
       RETURN Clasest(pl, ql, dl, pr, qr, dr, ps, qs, ds)
17.
```

What time complexity does this process need such that the overall algorithm runs in O(n lg n)?

Hint: think about Merge Sort.

Exercise Question 1

1. What must be the running time of ClosestSplitPair if the ClosestPair algorithm is to have a running time of O(n lg n)?

```
FUNCTION ClosestPair(pk, py)
   n = px length
   IF n == 2
      RETURN px[0], px[1], dist(px[0], px[1])
   left px = px[0 ... < n//2]
   left_py = [p FOR p IN py IF p.x < px[n//2].x]
  pl, ql, dl = ClosestPair(left px, left py)
   right px = px[n//2 ... < n]
   right py = [p FOR p IN py IF p.x \geq px[n//2].x]
  pr, qr, dr = ClosestPair(right px, right py)
  d = min(dl, dr)
  ps, qs, ds ClosestSplitPair(px, py, d)
```

Merge Sort and It's Recurrence

Func MS (array)

Base Case
$$T(n) = 2 T(\frac{n}{2}) + O(n)$$
Sort left $\frac{n}{2}$
Sort right $\frac{n}{2}$

Teluin

Teluin

```
FUNCTION RecursiveFunction(some input)
 IF base case:
   # Usually O(1)
   RETURN base case work(some input)
 # Two recursive calls, each with half the data
 one = RecursiveFunction(some_input.first_half)
 two = RecursiveFunction(some input.second half)
 # Combine results from recursive calls (usually O(n))
 one and two = Combine(one, two)
 RETURN one and two
```

$$T(n) = Z T(n/2) + O(n) = O(n | gn)$$

```
1.
      FUNCTION ClosestPair(px, py)
2.
       n = px.length
3.
       IF n == 2
4.
         RETURN px[0], px[1], dist(px[0], px[1])
5.
6.
       left px = px[0 ..< n//2]
7.
       left_py = [p FOR p IN py IF p.x < px[n//2].x]
       pl, ql, dl = ClosestPair(left_px, left_py)
8.
9.
10.
       right px = px[n//2 ..< n]
11.
       right_py = [p FOR p IN py IF p.x \geq px[n//2].x]
       pr, qr, dr = ClosestPair(right_px, right_py)
12.
13.
14.
       d = min(dl, dr)
       ps, qs, ds = ClosestSplitPair(px, py, d)
15.
16.
       RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)
17.
```

How do we find the closest pair that splits the two sides?

```
T(n) FUNCTION ClosestPair(px, py)
     O(1) = px.length
     0(1) n == 2
     O(1) RETURN px[0], px[1], dist(px[0], px[1])
     O(n) t px = px[0 ..< n//2]
     O(n) t_py = [p FOR p IN py IF p.x < px[n//2].x]
   T(n/2) ql, dl = ClosestPair(left_px, left_py)
    O(n) tht px = px[n//2 ..< n]
    O(n) tht py = [p FOR p IN py IF p.x \geq px[n//2].x]
   T(n/2) qr, dr = ClosestPair(right_px, right_py)
    O(1) = min(dl, dr)
    O(n), qs, ds = ClosestSp(itPair(px, py, d)
```

$$T(n) = 2 T(n/2) + O(n)$$

= O(n lg n)

O(1) TURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)

T(n)

FUNCTION MergeSort(array)

```
O(1) = array.length
```

O(1) **RETURN** array

T(n/left_sorted = MergeSort(array[0 ..< n//2])

T(n/2)ght_sorted = MergeSort(array[n//2 ..< n])

O(n) ray_sorted = Merge(left_sorted, right_sorted)

O(1) ETURN array_sorted

$$T(n) = 2 T(n/2) + O(n)$$

= O(n lg n)

```
FUNCTION RecursiveFunction(some_input)

O(1) base_case:

# Usually O(1)

O(1) RETURN base_case_work(some_input)
```

Two recursive calls, each with half the data

T(n/2) he = RecursiveFunction(some_input.first_half)

T(n/2) vo = RecursiveFunction(some_input.second_half)

Combine results from recursive calls (usually O(n))

O(n) he_and_two = Combine(one, two)

O(1) ETURN one_and_two

$$T(n) = 2 T(n/2) + O(n)$$

$$= O(n lg n)$$

$$Recurrence$$

Key Idea

 In ClosestSplitPair we only need to check for pairs that are closer than those found in the recursive calls to ClosestPair

• This is easier (faster) than trying to find the closest split pair without any extra information!

```
d = min[d(pl, ql), d(pr, qr)]
```

```
FUNCTION ClosestSplitPair(px, py, d)
 n = px.length
 x_median = px[n//2].x
 middle_py = [p FOR p IN py IF x_median - d < p.x < x_median + d]
 closest_d = INFINITY, closest_p = closest_q = NONE
 FOR i IN [0 ..< middle_py.length - 1]
   FOR j IN [1 ..= min(7, middle_py.length - i)]
    p = middle_py[i], q = middle_py[i + j]
    IF dist(p, q) < closest d
      closest_d = dist(p, q)
      closest p = p, closest q = q
 RETURN closest p, closest q, closest d
```

At most 6 points vertically "between" the two closest points.

Exercise Question 2

What is the running time of the nested for-loop (looping over j)?

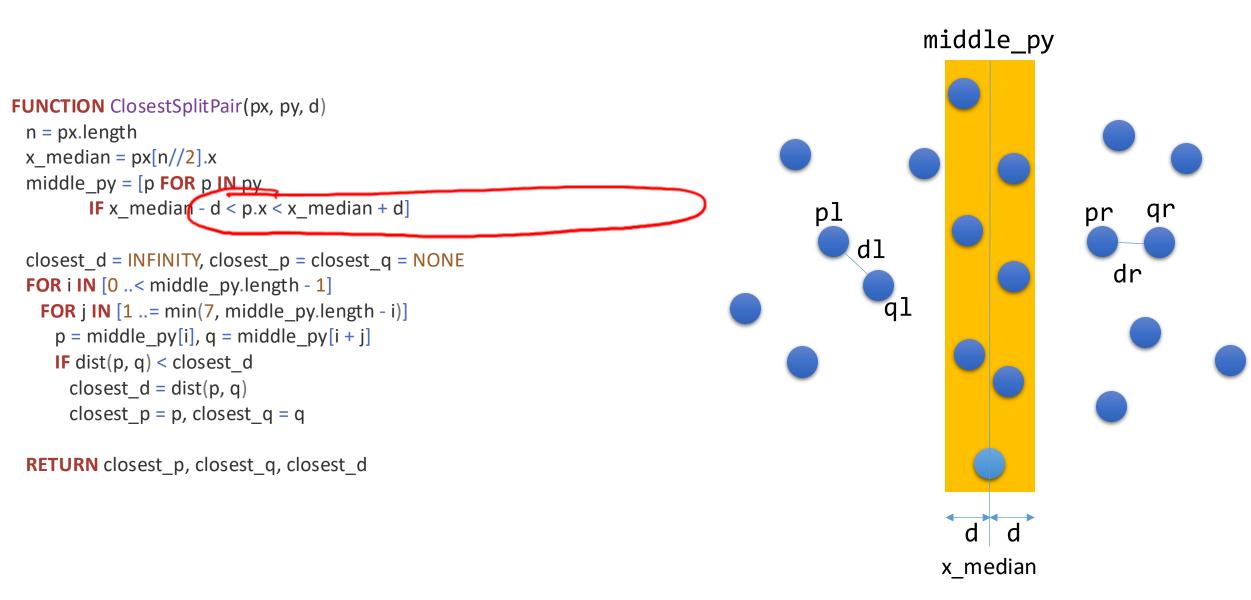
```
FUNCTION ClosestSplitPair(px, py, d)
   n = px.length
   x \text{ median} = px[n//2].x
   middle py = [p FOR p IN py IF x median - d < p.x < x median + d]
   closest d = INFINITY, closest p = closest q = NONE
   FOR i IN [0 ..< middle py.length - 1]
      FOR j IN [1 ..= min(7, middle py.length - i)]
         p = middle py[i], q = middle py[i + j]
         IF dist(p, q) < closest d</pre>
            closest d = dist(p, q)
            closest p = p, closest q = q
   RETURN closest p, closest q, closest d
```

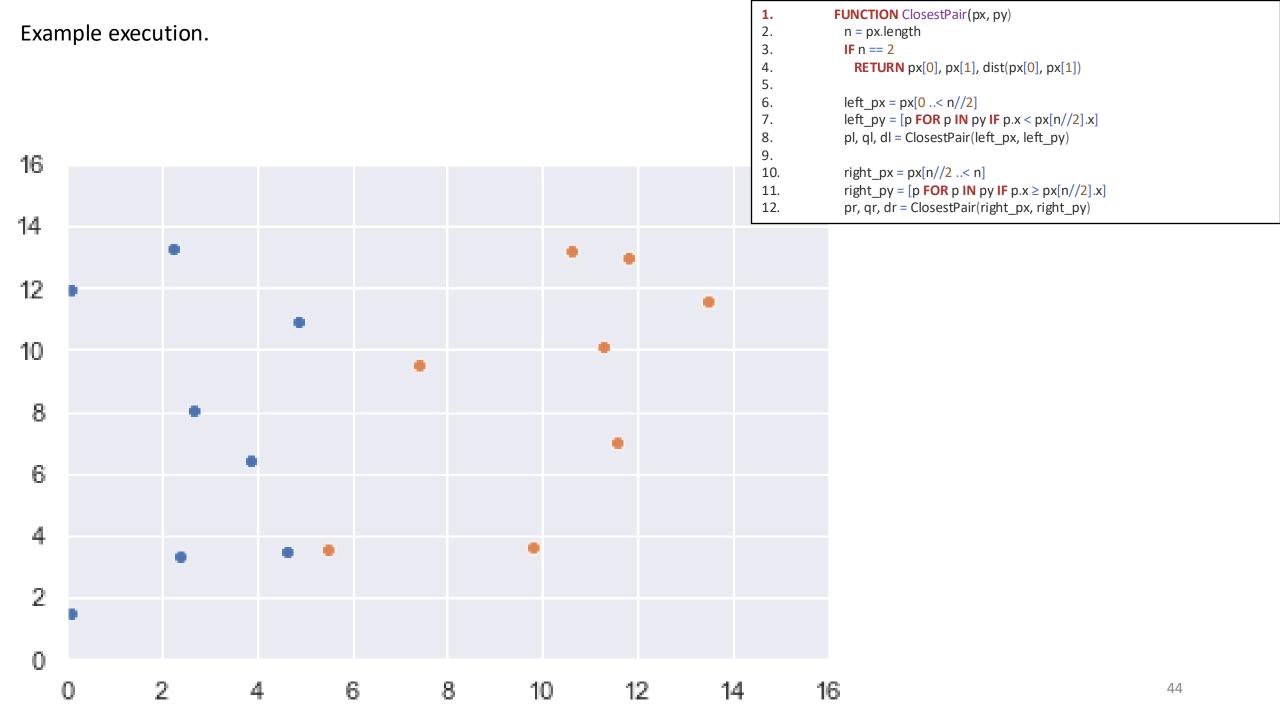
Loop Unrolling

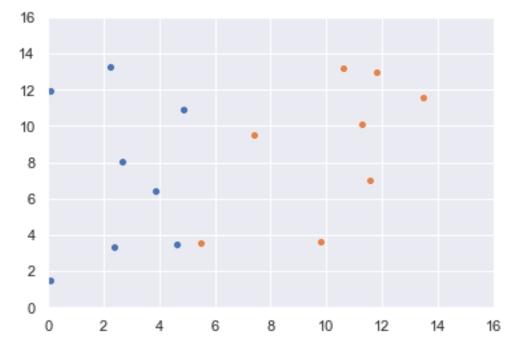
```
FOR j IN [1 ..= min(7, middle_py.length - i)]
  p = middle_py[i], q = middle_py[i + j]
  IF dist(p, q) < closest_d
     closest_d = dist(p, q)
     closest_p = p, closest_q = q</pre>
```

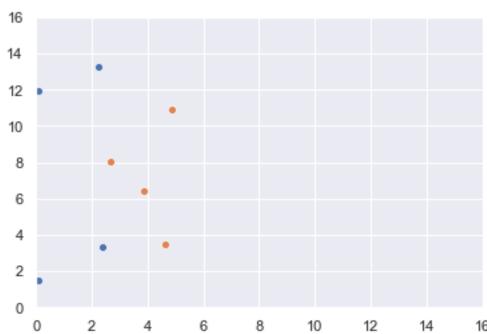
```
IF dist(middle_py[i], middle_py[i + 1]) < closest_d
    closest_d = dist(middle_py[i], middle_py[i + 1])
    closest_p = middle_py[i]
    closest_q = middle_py[i + 1]</pre>
IF dist(middle_py[i], middle_py[i + 2]) < closest_d
    closest_d = dist(middle_py[i], middle_py[i + 2])
    closest_p = middle_py[i]
    closest_q = middle_py[i]</pre>
```

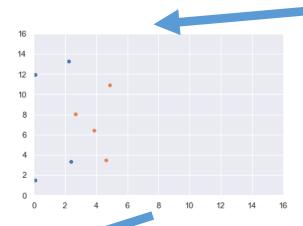
42

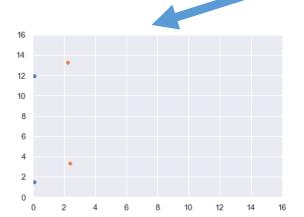


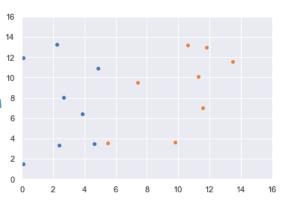


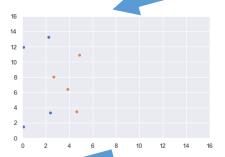


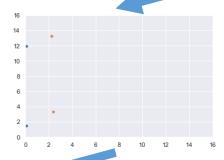


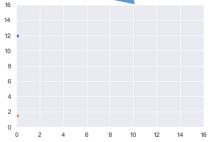




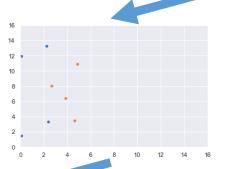


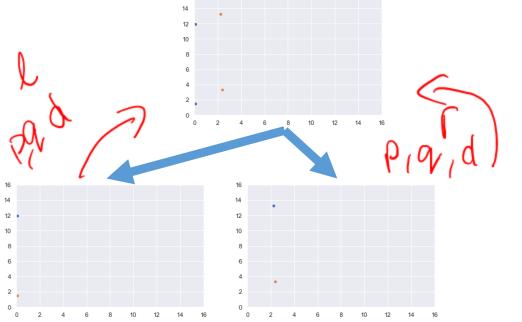


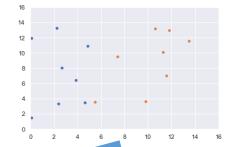


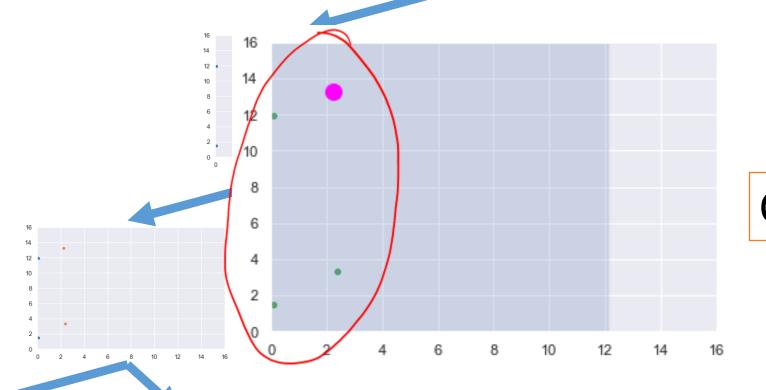




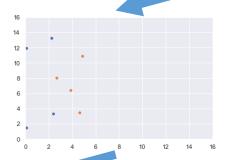


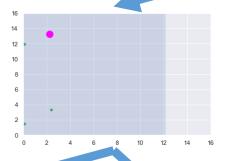


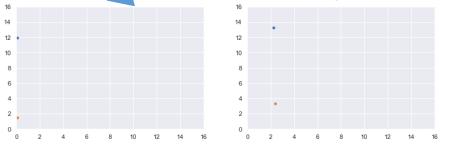


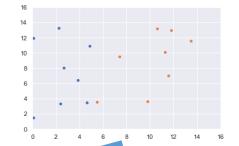


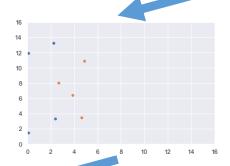
Closest Split Pair

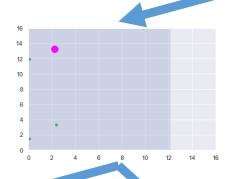




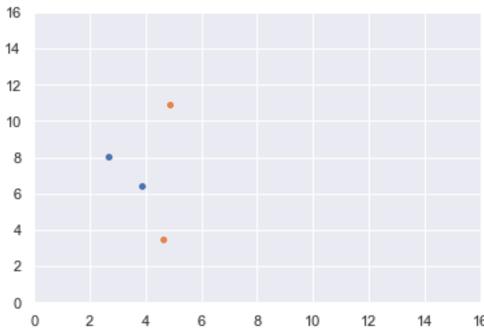


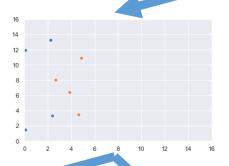


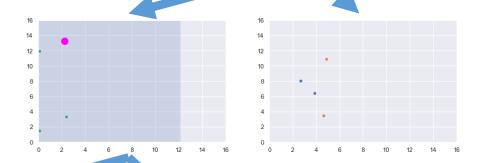


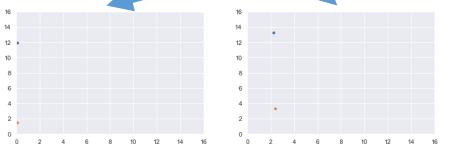


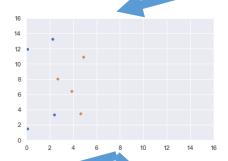


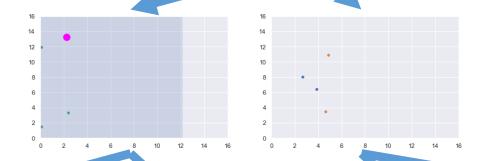


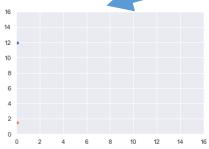


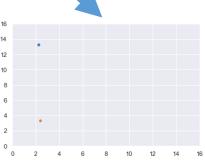


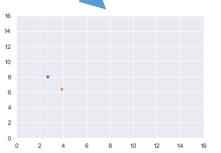


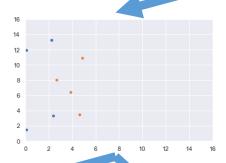


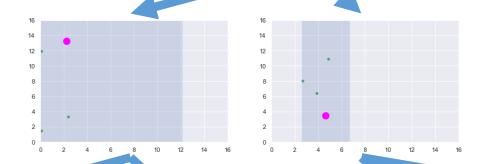


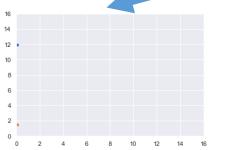


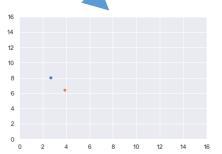


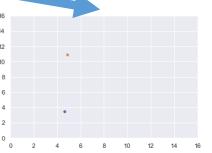




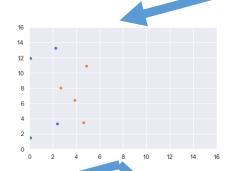


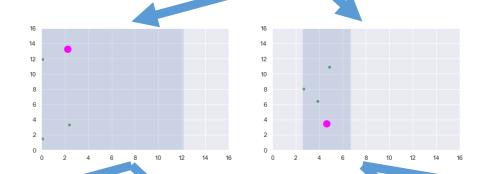


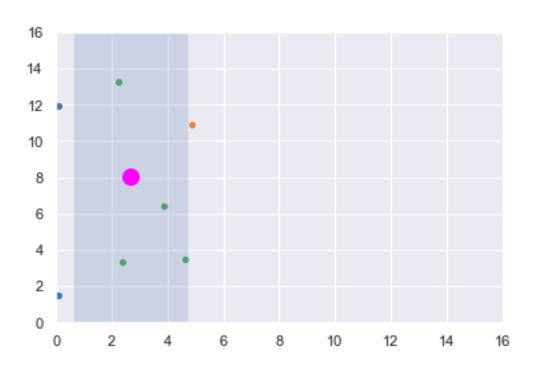


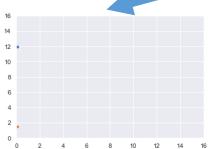


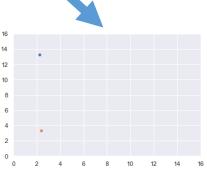


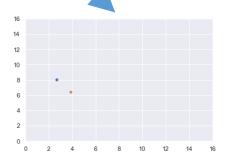


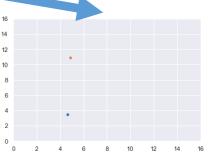


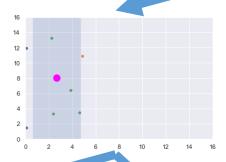


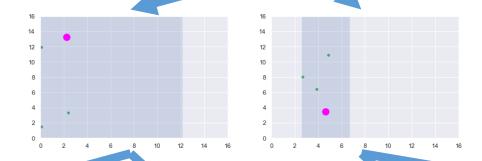


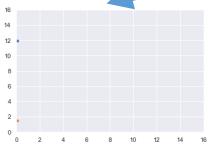


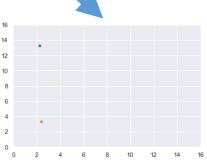


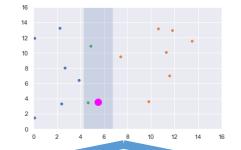


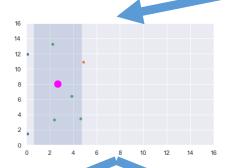


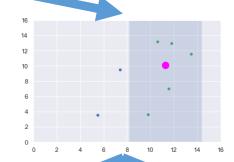


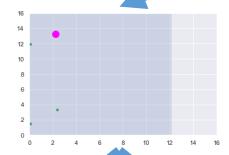


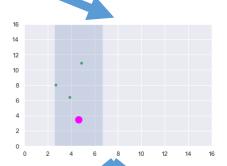


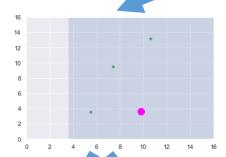


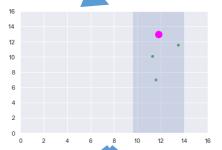












Theorem for correctness of ClosestPair

Theorem:

Provided a set of n points called P, the ClosestPair algorithm find the closest pair of points according to their pairwise Euclidean distances.

ClosestPair finds the closest pair

```
Let p \in left, q \in right be a split pair with d(p, q) < d
Then
```

- A. $p \text{ and } q \in middle_py$, and
- B. p and q are at most 7 positions apart in middle_py

If the claim is true:

<u>Corollary 1</u>: If the closest pair of P is in a split pair, then our <u>ClosestSplitPair</u> procedure finds it.

Corollary 2: ClosestPair is correct and runs in O(n lg n) since it has the same recursion tree as merge sort

Proof—Part A

```
Let p \in left, q \in right be a split pair with d(p, q)
                                                                      middle py
Than
       p and q ∈ middle py, and
If p = (x1,y1) \in left \underline{AND} q = (x2,y2) \in right \underline{AND} d(p,q) < d
Then
       x median - d < x1 \le x median and
                           \leq x2 < x median + d
       x median
                                                                        x_median
```

Otherwise, p and q would not be the closest pair with d(p, q) < d

Proof—Part A

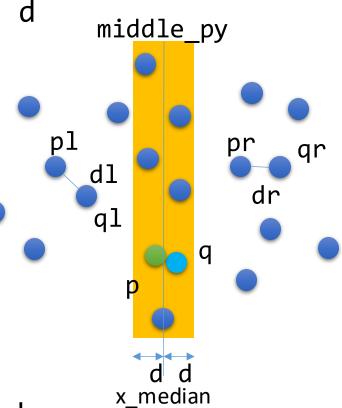
Let p ∈ left, q ∈ right be a split pair with d(p, q) < d
Then

A. $p \text{ and } q \in middle_py$, and

If $p = (x1,y1) \in left \underline{AND} q = (x2,y2) \in right \underline{AND} d(p,q) < d$ Then

$$x_{median} - d < x1 \le x_{median}$$
 and $x_{median} \le x2 < x_{median} + d$

Otherwise, p and q would not be the closest pair with d(p, q) < d



ClosestPair finds the closest pair

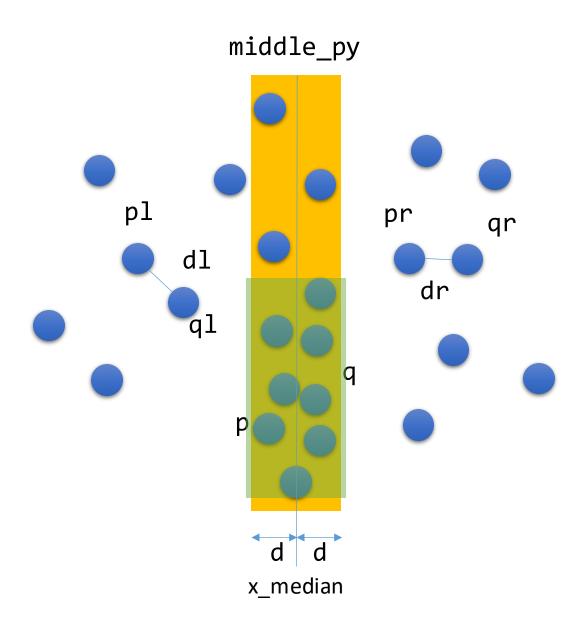
Let $p \in left$, $q \in right$ be a split pair with d(p, q) < dThen

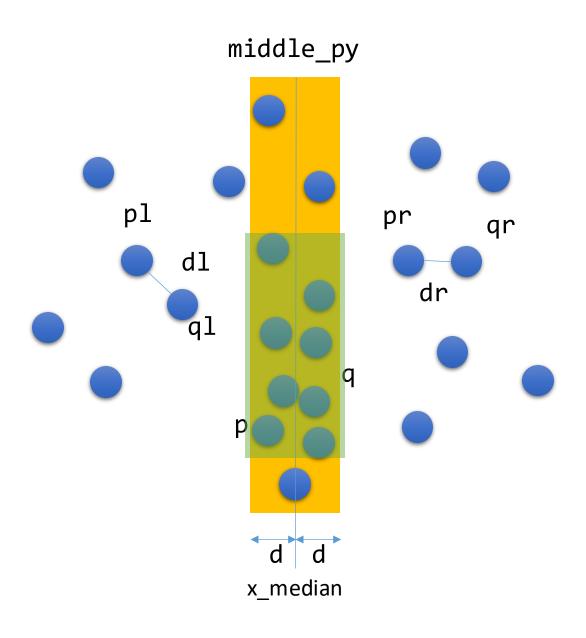
- A. $pand q \in middle py, and$
- B. p and q are at most 7 positions apart in middle py

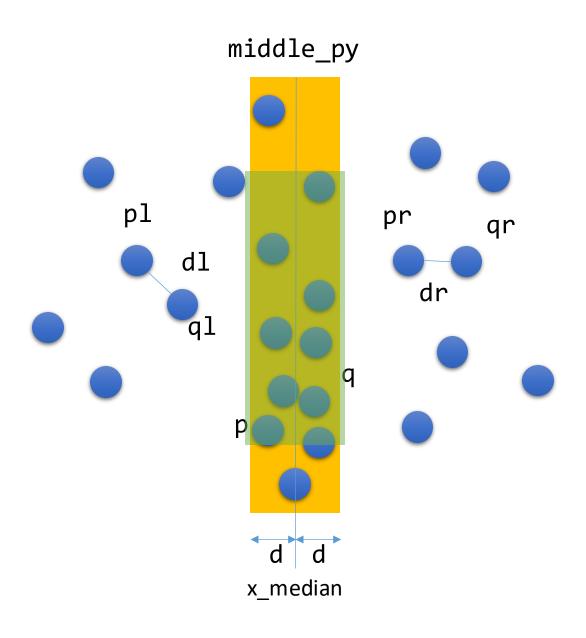
If the claim is true:

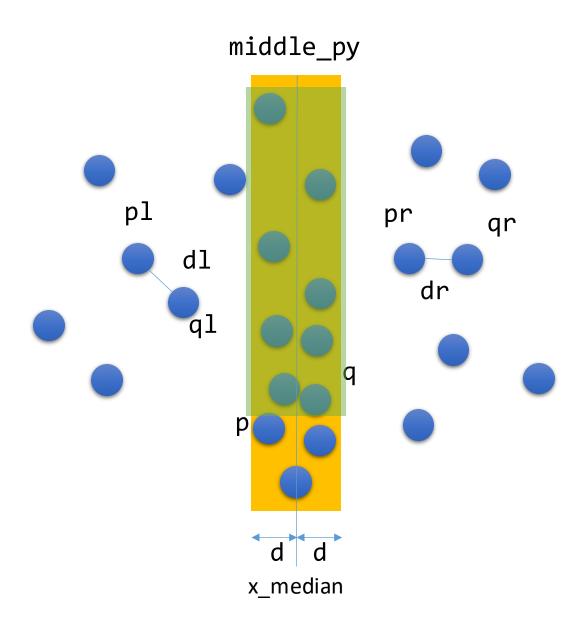
<u>Corollary 1</u>: If the closest pair of P is in a split pair, then our <u>ClosestSplitPair</u> procedure finds it.

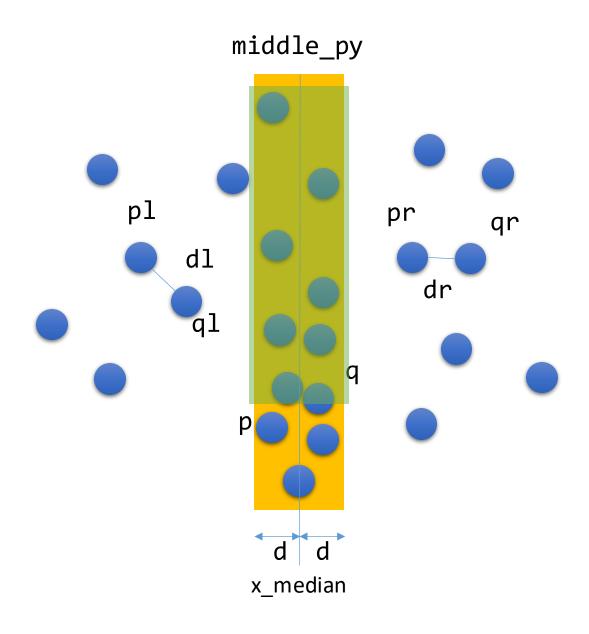
<u>Corollary 2</u>: ClosestPair is correct and runs in O(n lg n) since it has the same recursion tree as merge sort

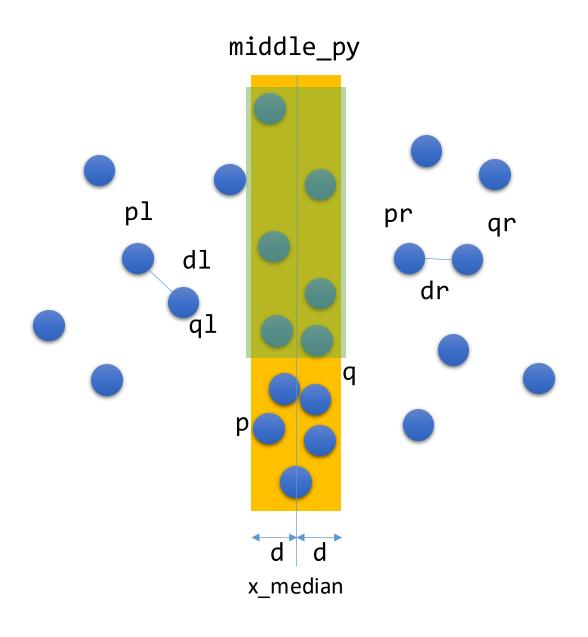


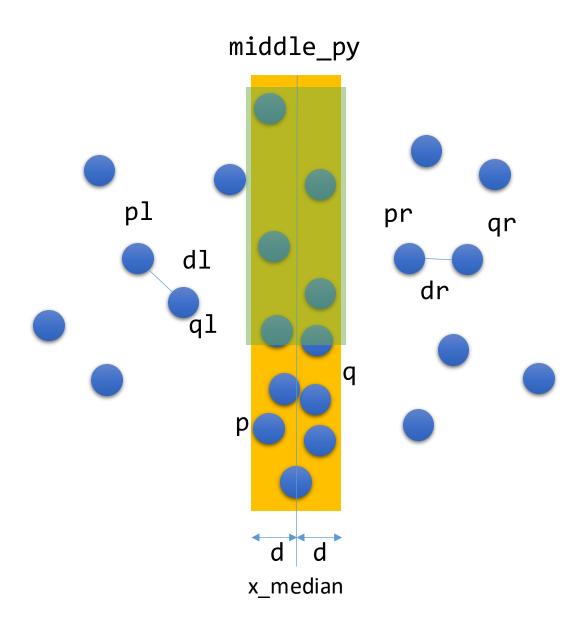


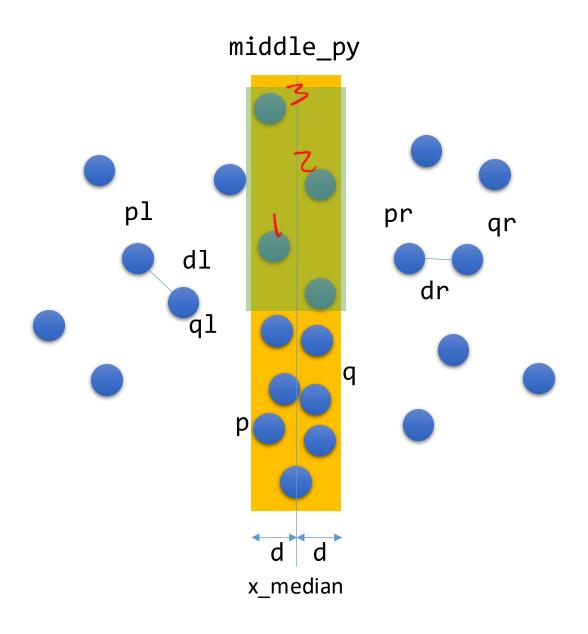


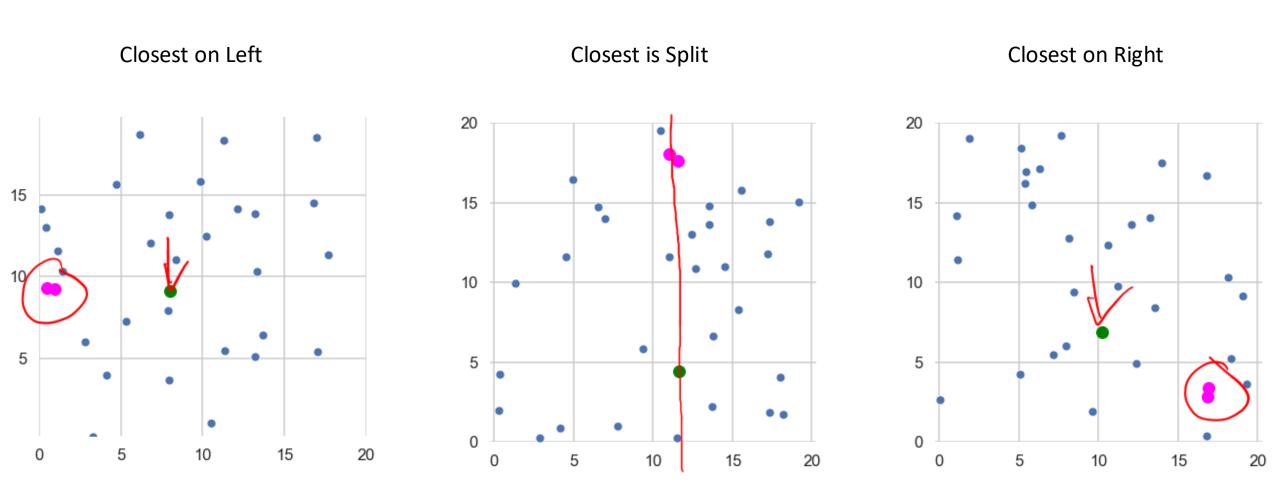






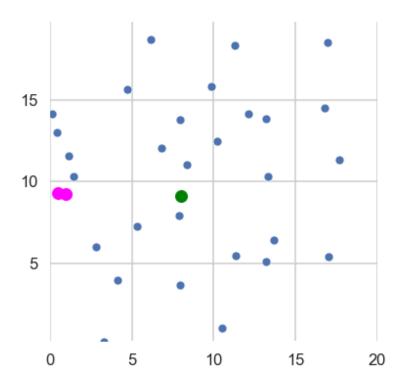




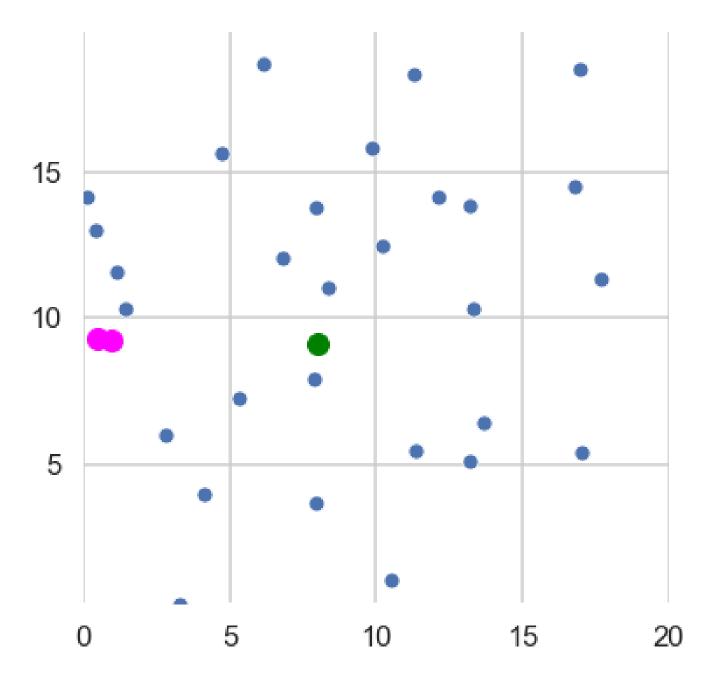


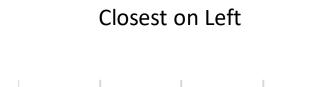
These are three different examples with different sets of points

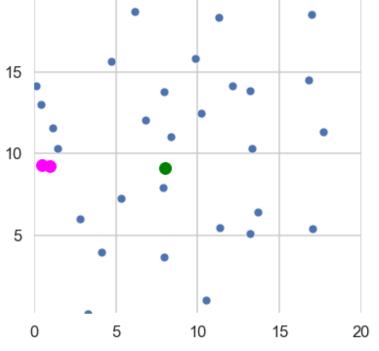
Closest on Left



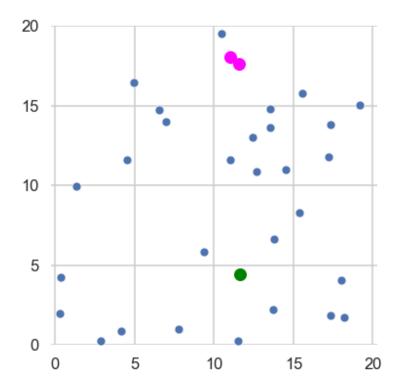
Closest on Left



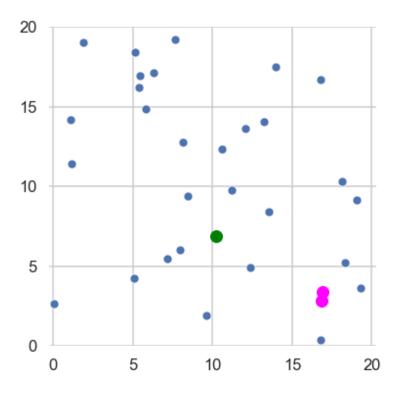




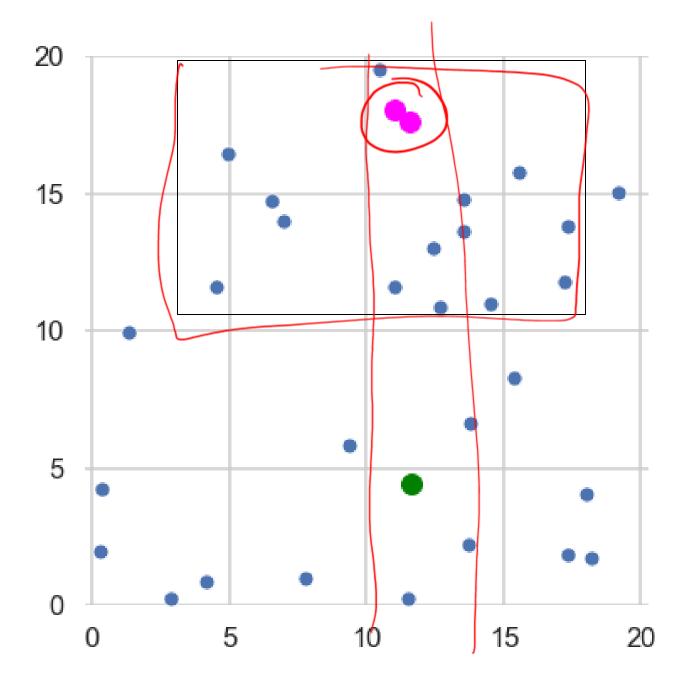
Closest is Split



Closest on Right

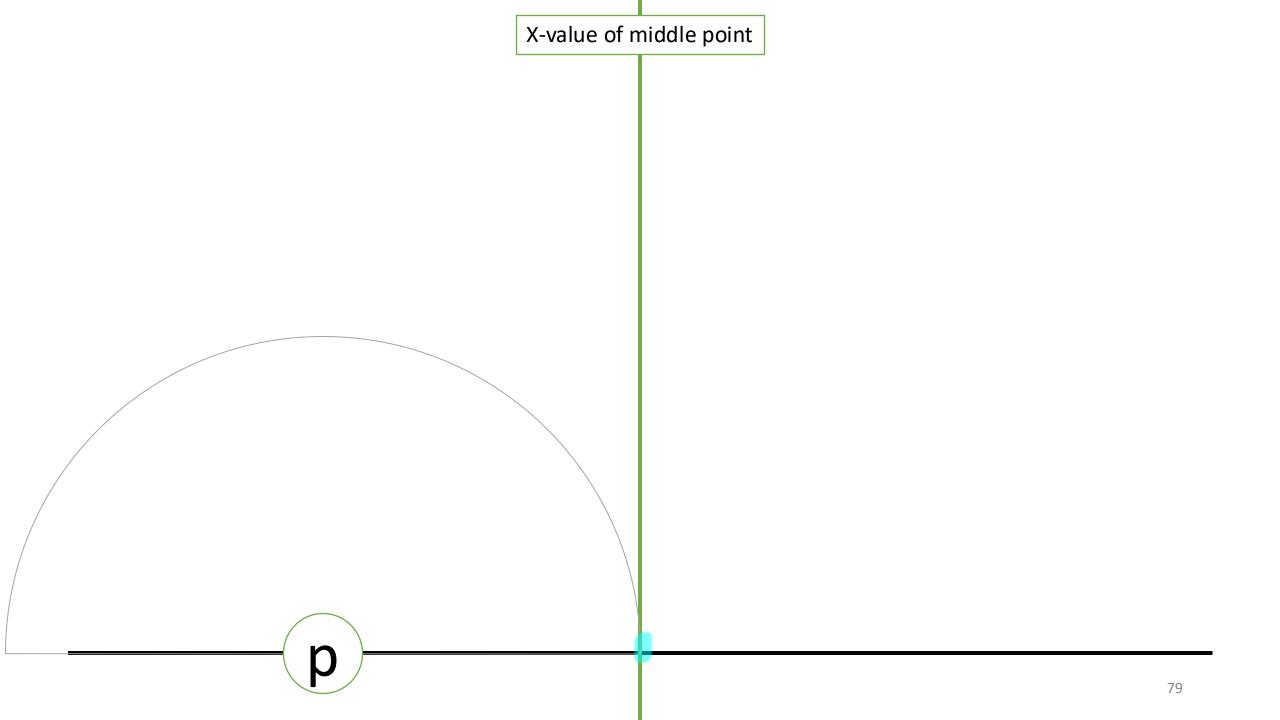


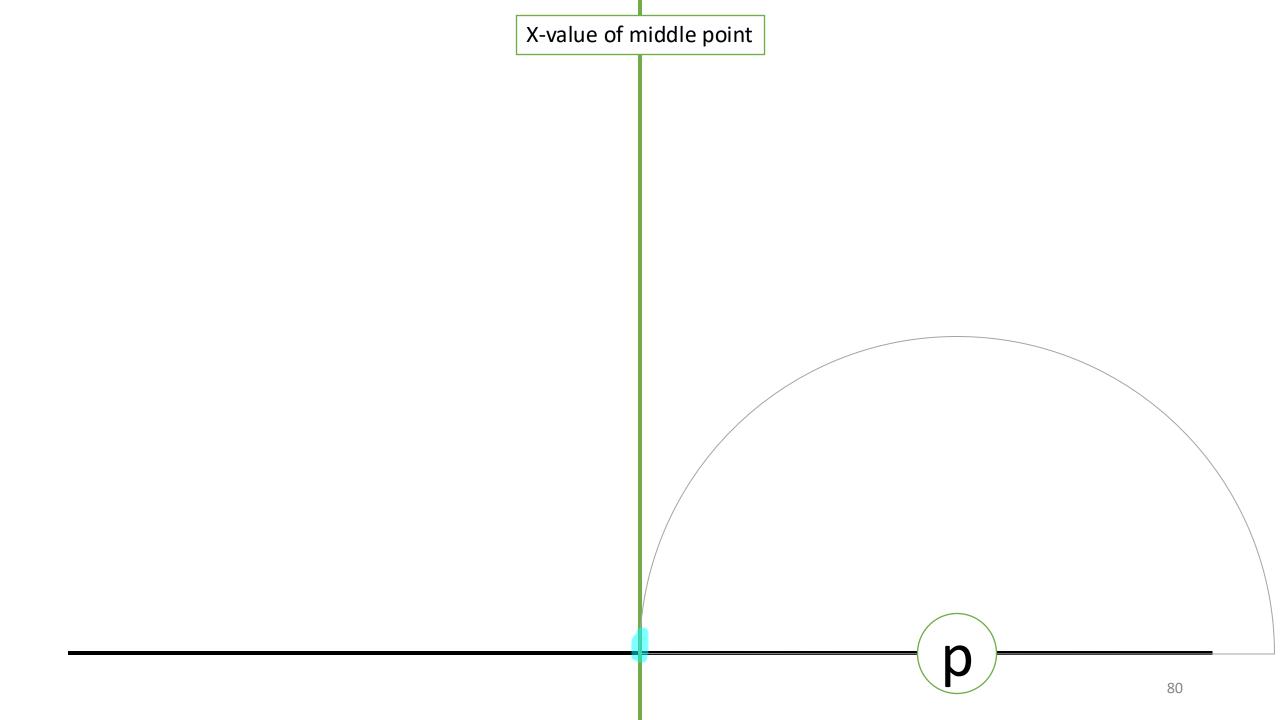
Closest is Split

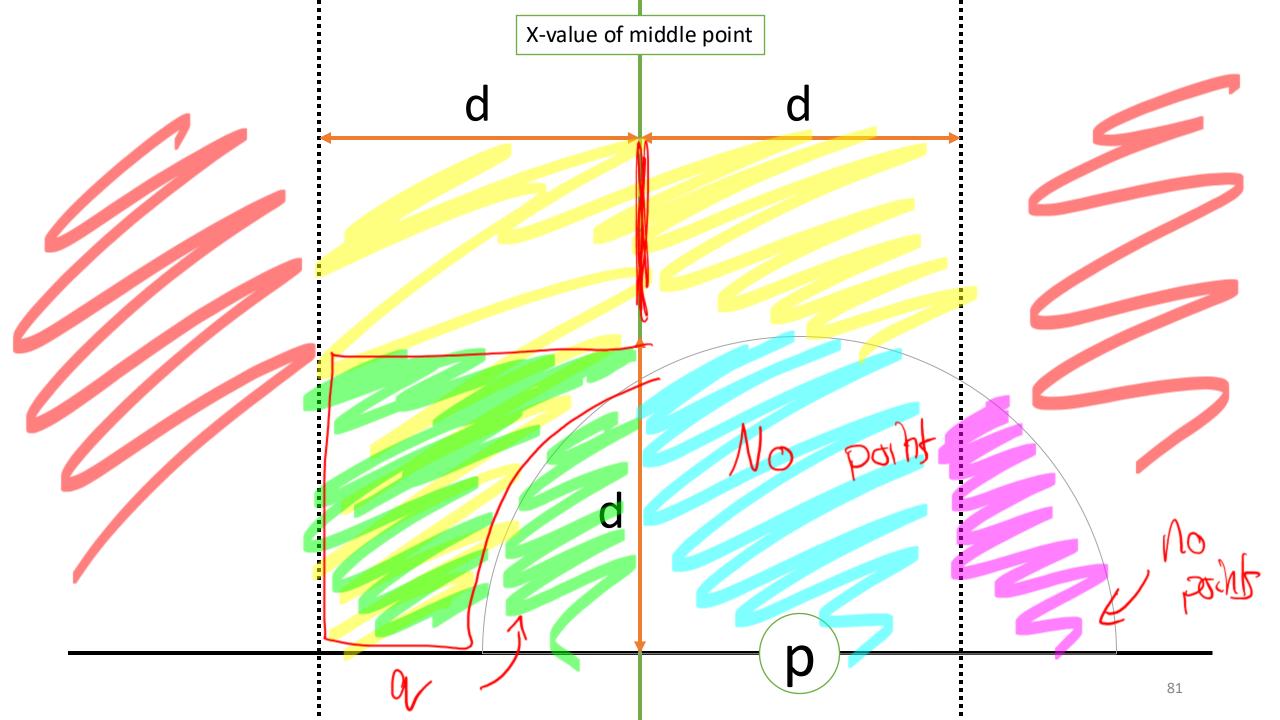


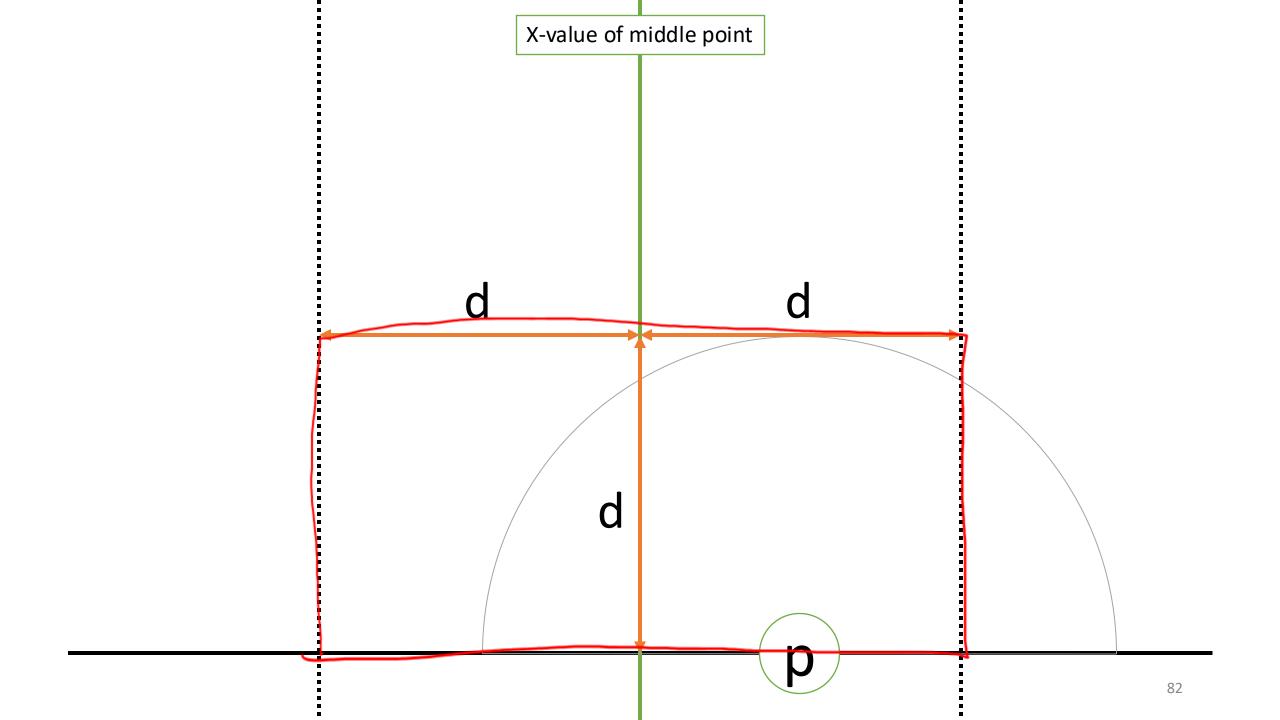
```
X-value of middle point
FOR i IN [0 ..< middle_py.length - 1]
   FOR j IN [1 ..= min(7, middle_py.length - i)]
    p = middle_py[i], q = middle_py[i + j]
    IF dist(p, q) < closest_d</pre>
      closest_d = dist(p, q)
      closest_p = p, closest_q = q
                                                                                                                                                                                 77
```

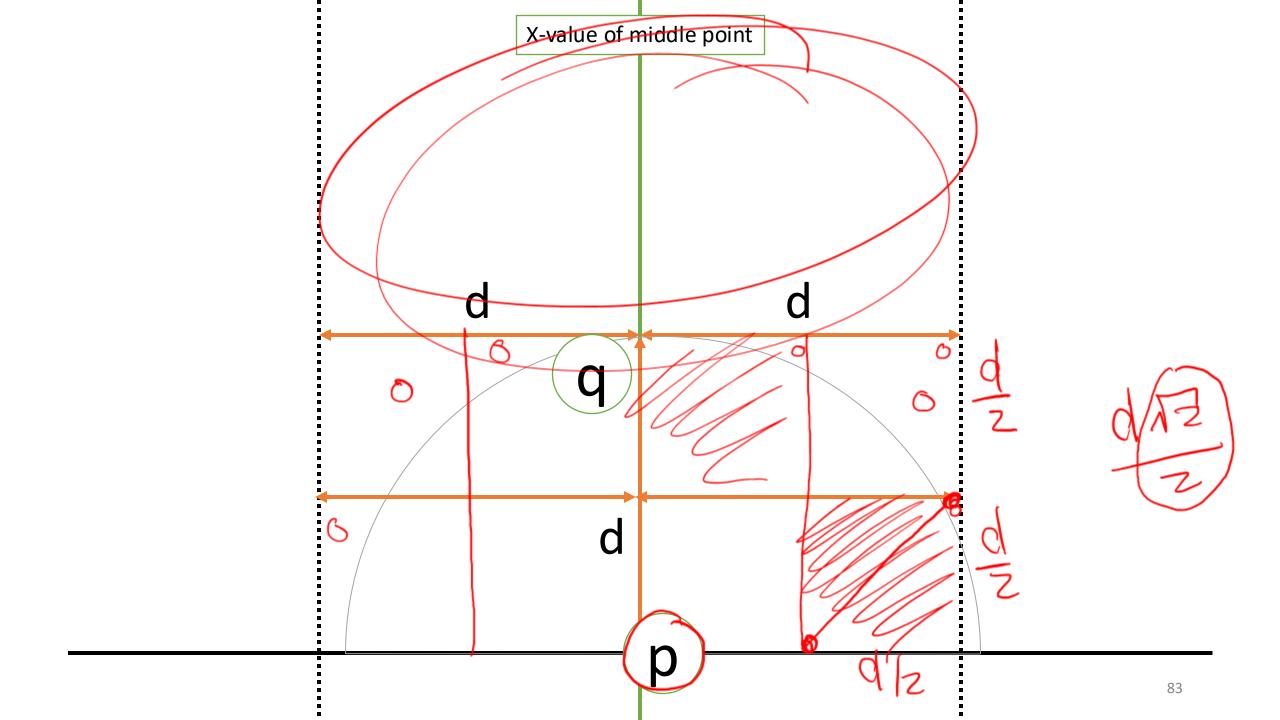
X-value of middle point 78



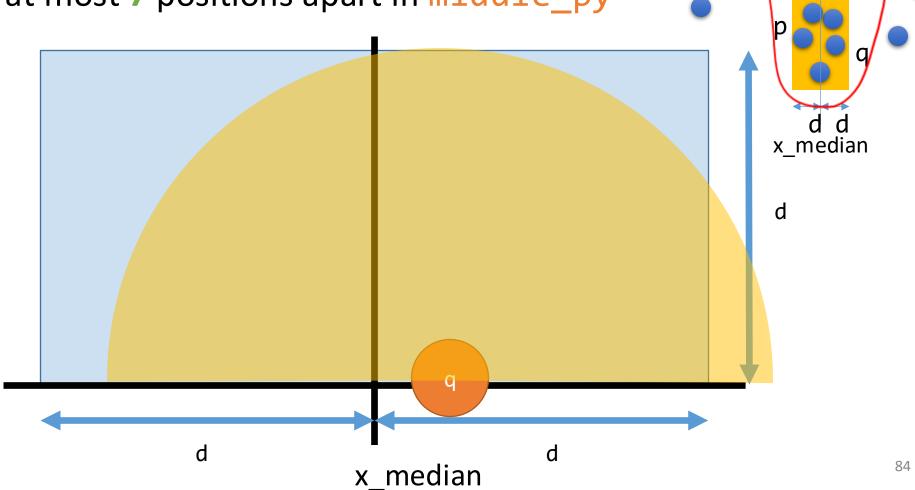






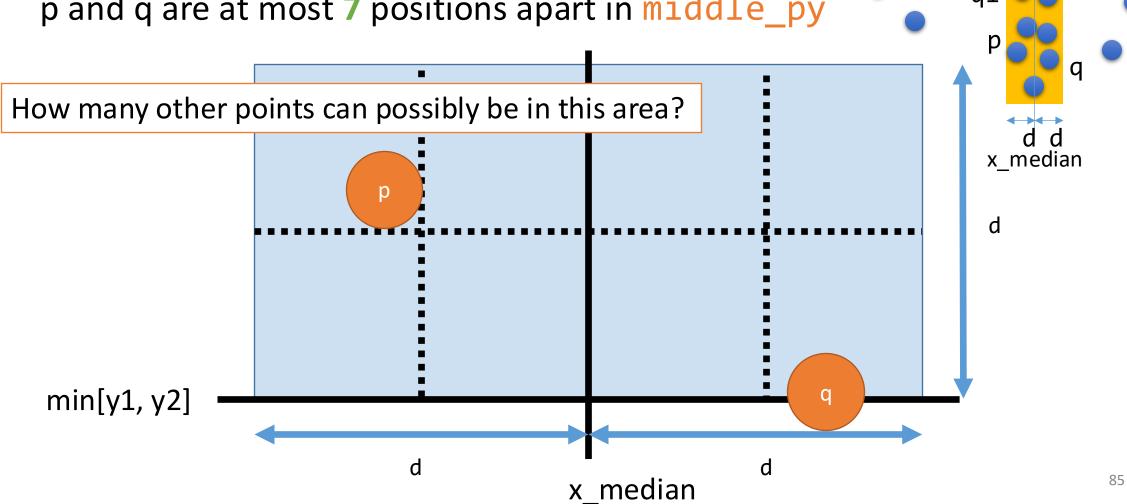


p and q are at most 7 positions apart in middle_py



middle py

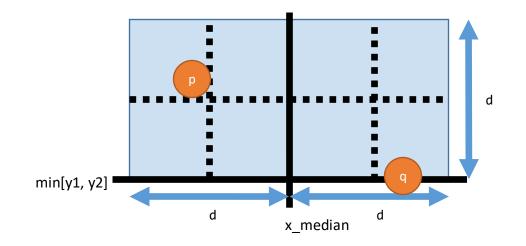
p and q are at most 7 positions apart in middle_py



middle_py

_dl

p and q are at most 7 positions apart
in middle_py

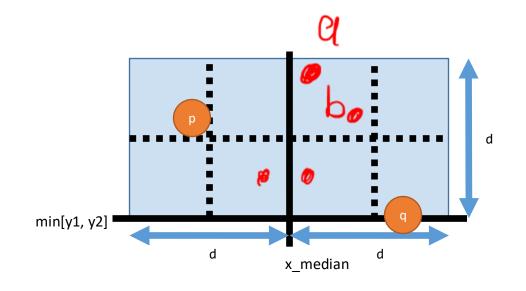


<u>Lemma 1</u>: All points of middle_py with a y-coordinate between those of p and q lie within those 8 boxes.

Proof:

- 1. First, recall that the y-coordinate of p, q differs by less that d.
- 2. Second, by definition of middle_py, all have an x-coordinate between x_median += d.

p and q are at most 7 positions apart
in middle_py



<u>Lemma 1</u>: All points of middle_py with a y-coordinate between those of p and q lie within those 8 boxes.

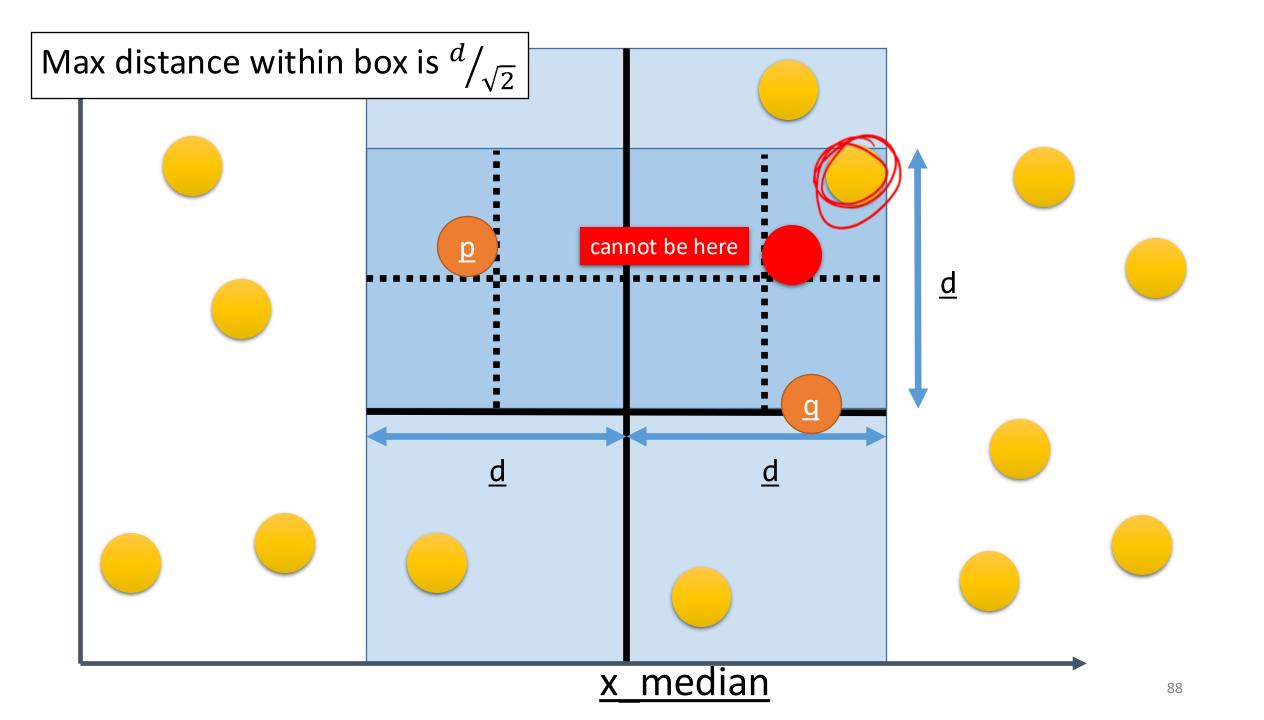
Lemma 2: At most one point of P can be in each box.

<u>Proof</u>: By contradiction. Suppose points a and b lie in the same box. Then

1. a and b are either both in L or both in R

This is a contradiction! How did we define d?

2. $d(a, b) \le d/2 \cdot sqrt(2) < d$



ClosestPair finds the closest pair

```
Let p \in left, q \in right be a split pair with d(p, q) < d.

Then
```

 \bigvee A. p and q \in middle_py, and

B. p and q are at most 7 positions apart in middle_py

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then our ClosestSplitPair procedure finds it.

Corollary 2: ClosestPair is correct and runs in O(n lg n) since it has the same recursion tree as merge sort

Summary Closest Pair

- 1. Copy P and sort one copy by x and the other copy by y in O(n lg
- 2. Divide P into a left and right in O(n)
- 3. Conquer by recursively searching left and right
- 4. Look for the closest pair in middle_py in O(n)
 - Must filter by x
 - And scan through middle_py by looking at adjacent points