Name: Name

Name: Name

Running Time of Sets and Lists

Consider the following function:
def count_duplicates(small list, big container):

"""Count the number of items in small list that
also appear in big container."""
total duplicates = ©
for item in small list:

if item in big container:

total duplicates += 1

return total duplicates

Consider the two following uses of the count_duplicates function (r() is a function that returns a random
integer and m and n are the lengths of the two data structures where m is much smaller than n).

small list = [r() for _ in range(m)]

big 1list = [r() for _ in range(n)]
big set = set(big list)

list total = count_duplicates(small list, big list)
set_total = count_duplicates(small list, big set)
The only differences between these two uses of the count_duplicates function is in the creation of the second

argument (big_listvsbig set). The variable big list is alist and the variable big_set is a set (a hash
table type data structure).

Answer the following questions while paying particular attention to the if statement in the count_duplicates
function.

(@) How do you check if an object exists in an unsorted list, and what is the asymptotic running time?

(b) How do you check if an object exists in a set (hash table), and what is the asymptotic running time?

(c) What is the asymptotic running time of count_duplicates when it is called with a list?

(d) What is the asymptotic running time of count_duplicates when it is called with a set?

(e) Do you expect the function to run faster the first time or the second time?



