
Name(s) ____________________________________ ___

Algorithms, Assignment 4: Heaps, Search Trees, and Hash Tables

1. Answer the following questions about heaps.
a. Why is a heap implemented using an array instead of pointers (for example, think about how linked

lists and binary search trees are implemented)?

b. Where can you find the second smallest element in a min-heap?

c. Describe an algorithm for finding the largest element in a min-heap.

d. What is the running time of your algorithm for finding the largest element in a min-heap?

2. Answer the following questions about trees.
a. Turn the following binary search tree into a valid Red-Black tree.

• Do not change any current nodes values.

• Add as few nodes as possible.

• Indicate black nodes by circling the node (including new nodes) and do nothing to red nodes.

b. Why is it important to balance a binary search tree?

c. How does a binary search tree differ from a heap?

d. Describe an application in which you would prefer a binary search tree to a sorted array.

3. Answer the following questions.
a. What is the probability of a collision when inserting a new object into a hash table if n=10 and the

table already contains one object?

b. What is the probability of a collision when inserting a new object into a hash table if n=10 and the
table already contains four objects (do not take into account collisions from the previous insertions)?

c. How many objects can you insert into a hash table before you have a greater than 50% chance to
have a collision between any two objects if n=100? Assume all hash values are equally likely. Note:
this problem is fundamentally different than (a) and (b). See the assignment description for a link to
an equation you can use.

d. Fill in the following table given the hash function below and assuming that your hash table has 10
buckets (use linear probing to handle any collisions). You should run this Python code to get your
results.

def djb2(s):
 value = 5381 # some prime number
 magic = 33 # magic number that works well
 for c in s:
 value = value * magic + ord(c)
 return value & 0xFFFFFFFF

String ‘Hello!,’ ‘CSCI140 ‘Algorithms’ ‘Class’

Hash Value

Bucket Index

4. Insert the following strings into the three different hash tables:

 Dijkstra Kosaraju Turing Lovelace Knuth Backus Neumann Shannon Church Chomsky

Hash 3471236513 651802309 3562396926 442506320 227180719 2833704798 1813629751 4069740186 2881795522 602694147

Hash % 10 3 9 6 0 9 8 1 6 2 7
Hash % 17 2 5 6 9 12 9 0 9 11 15
Hash % 15 8 4 6 5 4 3 1 6 7 12

Some examples are provided for you. You should insert the objects from left (starting with ‘Dijkstra’) to
right. (Note: these are really hash sets rather than dictionaries.) For each bucket, indicate the total
number collisions experienced when inserting the item(s) in the space to the left.

I. A separate chaining hash table with 10 buckets. Insert at the tail of each linked list.

II. An open addressing hash table using linear probing with 17 buckets.

III. A hash table similar to that in Python 3.6+. Use an indices array with 15 buckets and use linear
probing to insert into this array (see the amazing comments in dictobject.c to see collisions are
actually handled—it is not too different than what we have discussed in class).

I. Separate Chaining

0

1

2

3
4

5

6 Turing Shannon

7

8

9

II. Open Addressing

0
1

2

3

4

5

6 Turing
7

8

9

10

11 Shannon

12
13

14

15

16

III. Python 3.6 (ish)

Indices Array
0

1

2

3

4

5

6 2

7

8

9 7

10

11

12

13

14

Entries Array
0

1

2 Turing

3

4

5

6

7 Shannon

8

9

https://svn.python.org/projects/python/trunk/Objects/dictobject.c

5. In class we showed that maintaining the red-black tree invariants guarantees that the height of a
red-black tree with 𝑛 nodes is never more than 2 lg(𝑛 + 1). Consider another balanced binary search
tree which maintains the following invariant:

For any node x, the heights of the left and right subtrees of x differ by at most 1.

We’ll call these “1-off” trees.

Prove by induction that a 1-off tree with height ℎ has at least 𝑓(ℎ) nodes, where 𝑓(ℎ) is the ℎ𝑡ℎ
Fibonacci number. Recall that

• 𝑓(𝑛) = 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2) and

• 𝑓(0) = 𝑓(1) = 1

When considering your base case, you will find it helpful to consider the cases when ℎ = 0 and
 ℎ = 1. Note, we discussed inductive proofs for Quicksort and Dijkstra’s Algorithm.

