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Outline

Topics and Learning Objectives

• Discuss strategies for finding solutions to difficult problems

• Apply an approximation algorithm to an NP-Hard problem

Exercise

• None



NP-Complete

What does it mean if your problem is NP-Complete?

1. It belongs to NP, and

2. It belongs to NP-Hard.

What does it mean to belong to NP?

• We can verify a solution as correct or incorrect in polynomial time.

What does it mean to belong to NP-Hard?

• We do not know an algorithm to solve it in polynomial-time.



So, your problem is NP-Hard…

• This does not mean you cannot solve your problem.

• This does not mean that you cannot get an optimal solution.

• It does mean that you should set your expectations appropriately.

• You are probably not going to accidentally prove that P = NP.



Strategies

1. Focus on solving a special case that is tractable
• The general Knapsack problem is NP-Complete, but we solved it by looking at 

problems where the total capacity W was O(nW).

1. Solve the problem in exponential time (but faster than brute-force)
• We looked an algorithm for TSP that runs in O(n22n) instead of O(n!)

2. Solve the problem using some heuristics
• These algorithms are not guaranteed to give optimal solutions, 
• but they are (generally) fast.



The Traveling Salesman Problem

Given a list of cities and the distances between each pair of cities, what 
is the shortest possible route that visits each city exactly once and 
returns to the origin city?

• Input: a complete, undirected graph with non-negative edge costs

• Output: a minimum cost tour (a cycle that visits each vertex once)



Solving the TSP

• There are n! total possible tours.

Input Size Brute-Force n! Exponential O(n22n)

14 87 billion 178 million … ~ 3 million

15 1 trillion 307 billion … ~ 7 million

16 20 trillion 922 billion … ~ 16 million …

30 265 nonillion 252 octillion 
859 septillion 812 sextillion 

191 quintillion 58 quadrillion 
636 trillion …

~ 966 billion 367 million …



Why is TSP so difficult?

Doesn’t it seem like it is just a special case of SSSP, with one extra edge 
back to the start vertex?

Remember our SSSP sub-problems (Bellman-Ford):

For every edge edge budget (FOR num_edges IN [0 ..= n])

Let Lij = the length of the shortest path from 1 to j that uses at 
most i edges



Why is TSP so difficult?

For every edge edge budget (FOR num_edges IN [0 ..= n])

Let Lij = the length of the shortest path from 1 to j that uses at 
most i edges

How are they different?

• Subproblems of SSSP do not solve the original TSP problem (SSSP 
does not require the use of i edges).

• SSSP doesn’t enforce that we cannot visit a vertex more than once.

• If we change SSSP to enforce the use of i edges with no repeats, we 
lose the ability to solve larger problems from smaller problems.



Dynamic Programming for TSP

For every destination j in {1, 2, …, n}, and 
for every subset S of {1, 2, ..., n}

Ls,j = the minimum length of a path from 1 to j that visits all 
of the vertices in S

How does this improve on brute-force?

• It does not care about the order in which we visit the vertices in S.

• But, there are still an exponential number of choices for S → O(2n)



Optimal Substructure Lemma

• Let P be a shortest path from 1 to j that visits S.

• If the last hop of P is (k, j)

• Then P’ is the shortest path from 1 to k

𝐿𝑖,𝑗 = min
𝑘∈𝑆,𝑘≠𝑗

𝐿𝑆− 𝑗 ,𝑘 + 𝐶𝑘𝑗

1 k j

What if we don’t need the optimal path?
Just one that is “good enough”?



Local Search Heuristic for 
Hard Problems



FUNCTION LocalSearch(numTrials, solutionFcn, evaluationFcn)

 bestSolution = solutionFcn()

 bestPerformance = evaluationFcn(bestSolution)

 FOR trial IN [0 ..< numTrials]

   newSolution = solutionFcn(bestSolution)

   newPerformance = evaluationFcn(newSolution)

  

   IF newPerformance > bestPerformance

    bestPerformance = newPerformance

    bestSolution = newSolution

 

 RETURN bestSolution



Local Search

• Let X be a set of candidate solutions to a problem

• For example, let it be all possible tours of a graph

The key to local search to to define a neighborhood:

• For each x in X, specify which y in X are its “neighbors”

X
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Neighborhood for TSP

Let’s say that two tours are neighbors if they differ by a minimal 
number of edges.

DC

BA

DC

BA



FUNCTION LocalSearch(numTrials, solutionFcn, evaluationFcn)

 bestSolution = solutionFcn()

 bestPerformance = evaluationFcn(bestSolution)

 FOR trial IN [0 ..< numTrials]

   newSolution = solutionFcn(bestSolution)

   newPerformance = evaluationFcn(newSolution)

  

   IF newPerformance > bestPerformance

    bestPerformance = newPerformance

    bestSolution = newSolution

 

 RETURN bestSolution



The Max-Cut Problem

• Input: an undirected graph

• Output: a cut (A,B) that maximizes the number of crossing edges

• Reminder: a cut is a partition of the vertices into two non-empty sets

• How many possible cuts are there?

It turns out that:

• The min-cut problem is tractable (we have a polynomial time algorithm)

• The max-cut problem is NP-Complete



How many edges cross 
the max-cut?

a.4
b.6
c. 8
d.10
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Local Search for Max-Cut

Notation: for a cut (A, B) and a vertex v:

• Cv(A,B) = the number of edges incident on v that cross (A,B)

• Dv(A,B) = the number of edges incident on v that don’t cross (A,B)

V

Cv = 2
Dv = 3



Local Search for Max-Cut

1. Let (A,B) be some arbitrary cut of the graph G

2. While there is a vertex v with Dv(A,B) > Cv(A,B)
1. move v to the other side of the cut

3. Return the final cut (A,B)



About this algorithm

• This algorithm runs in polynomial time (quadratic)

• This algorithm is not guaranteed to give the optimal cut

• This algorithm outputs a cut which is at least 50% of the maximum 
possible



About Local Search Algorithms

How do you pick the initial solution?
• Use a heuristic
• “this type of solution is usually a 

good place to start”
• Use a random choice

Which superior neighbor should you 
choose?
• Use a heuristic
• Choose the neighbor at random

• Choose the neighbor that yields the 
most improvement

• How do you define the 
neighborhood?

Can you think of some simple 
techniques for improving local search?
• Run the algorithm multiple times 

with some random choices!
• Independent trials.
• Combine good solutions.
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