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Outline

Topics and Learning Objectives

• Discuss and analyze the Floyd-Warshall Algorithm

Exercise

• None
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All-Pairs Shortest Path Problem

Compute the shortest path from every vertex to every other vertex

• Input: a weighted graph (no need for a start vertex)

• Output:
• Shortest path from u → v for all values of u and v

• Or report that a negative cycle has been discovered

• Can we solve this problem with what we know already?
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SSSP → APSP

How do we turn a solution to the single-source shortest path (SSSP) 
problem into a solution for the all-pairs shortest path (APSP) problem?

• This is called a reduction!

• How many times do we need to run a SSSP procedure for APSP?

a. 1
b. n – 1
c. n
d. n2
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SSSP algorithms

Running time of APSP if we don’t allow negative edges?

• n * O(Dijkstra’s Algorithm) = O(n m lg n)

• For sparse graphs: O(n2 lg n)

• For dense graphs: O(n3 lg n)

Running time of APSP if we do allow negative edges?

• n * O(Bellman-Ford) = O(n2 m)

• For sparse graphs: O(n3)

• For dense graphs: O(n4)
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Consider APSP on dense graphs.

• How many values are we going to output?

• What is the potential length of a shortest path?

• What is the lower bound on the running time of APSP?

• It is tempting to say that the lower bound is n3

• However, this lower bound has yet to be determined

• Consider the matrix multiplication procedure developed by Strassen

n2

n -1
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Specialized APSP Algorithm

• Although we can use Bellman-Ford and Dijkstra’s algorithms, there 
are, in fact, specialized APSP algorithms

• The Floyd-Warshall algorithm solves the APSP problem 
deterministically in O(n3) on all types of graph

• It works with negative edge lengths

• Meaning that is is as good as Bellman-Ford for sparse graphs,

• And much better than Bellman-Ford for dense graphs.
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Question

• What algorithm would you choose for sparse graphs?
• Dijkstra’s n times if there are no negative edges, Floyd-Warshall otherwise

• What algorithm would you choose for dense graphs?
• Always Floyd-Warshall

Sparse Graphs Dense Graphs

Dijkstra’s n times O(n2 lg n) O(n3 lg n)

Bellman-Ford n times O(n3) O(n4)

Floyd-Warshall O(n3) O(n3)
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Optimal Substructure for APSP

Key concept: 

• label the vertices 1 though n (giving them an arbitrary order), 

• and then introduce the notation V(k) = {1, 2, …, k}

Optimal Substructure Lemma:

• Assume, for now, that the graph does not include a negative cycle

• Fix a source vertex i, a destination vertex j, and a value for k

• Then let P be the shortest i → j path with internal nodes from V(k)
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Example Substructure

Optimal Substructure Lemma:

• Fix a source vertex i, a destination vertex j, and a value for k

• Then let P be the shortest i → j path with internal nodes from V(k)
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Example Substructure

Optimal Substructure Lemma:

• Fix a source vertex i, a destination vertex j, and a value for k

• Then let P be the shortest i → j path with internal nodes from V(k)
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Example Substructure

Optimal Substructure Lemma:

• Fix a source vertex i, a destination vertex j, and a value for k

• Then let P be the shortest i → j path with internal nodes from V(k)
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Example Substructure

Optimal Substructure Lemma:

• Fix a source vertex i, a destination vertex j, and a value for k

• Then let P be the shortest i → j path with internal nodes from V(k)
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Optimal Substructure Lemma

Suppose that G has no negative cycles. Let P be the shortest (cycle-
free) path i → j , where all internal nodes come from V(k). Then:

• Case 1: if k is not internal to P, then P is also a shortest path i → j with 
all internal nodes from V(k - 1). 

• Case 2: if k is internal to P, then:
• Let P1 = the shortest i→k path with nodes from V(k - 1), and
• Let P2 = the shortest k→j path with nodes from V(k - 1)

• Effectively, k splits the path into two optimal subproblems
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Picture of our cases

i < k < k < k jCase 1

i < k < k jkCase 2

P

P2P1

16



Floyd-Warshall Algorithm Base Cases

Let A = 3D array, where A[i, j, k] = the length of the shortest i → j path 
with all internal nodes from {1, 2, ..., k}

• Which index (i, j, or k) do you think represents our base case?

What is the value of A[i, j, 0] when…

• i = j?

• there is a direct edge from i to j

• there is no edge directly connecting i to j

0

cij

∞
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FUNCTION FloydWarshall(graph)

 # Base 1 indexing for vertices labeled 1 through n

 pathLengths = [n by n by (n + 1) array]

 # Base case

 FOR vFrom IN [1 ..= n]

   FOR vTo IN [1 ..= n]

    IF i == j

      length = 0

    ELSE IF graph.hasEdge(vFrom, vTo)

      length = graph.edges[vFrom][vTo].weight

    ELSE

      length = INFINITY

    pathLengths[vFrom][vTo][0] = length

 # Table building

   continued next slide…
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FUNCTION FloydWarshall(graph)

 # Base 1 indexing for vertices labeled 1 through n

 pathLengths = [n by n by (n + 1) array]

 # Base case

 cut from previous slide…

 # Table building

 FOR k IN [1 ..= n]

   FOR vFrom IN [1 ..= n]

    FOR vTo IN [1 ..= n]

      # Case 1

      withoutK = pathLengths[vFrom][vTo][k - 1]

      # Case 2

      withKSubPathA = pathLengths[vfrom][k][k - 1]

      withKSubPathB = pathLengths[k][vTo][k - 1]

      pathLengths[vFrom][vTo][k] = min(

       withoutK,

       withKSubPathA + withKSubPathB

      )
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Floyd-Warshall Algorithm

Running time?

• O(n3)

Correctness?

• Substructure lemma

• Where are the final answers?
• How does it handle negative cycles?

• Reconstruction is similar to other dynamic programming problems.

# Table building

FOR k IN [1 ..= n]

 FOR vFrom IN [1 ..= n]

  FOR vTo IN [1 ..= n]

    # Case 1

    withoutK = pathLengths[vFrom][vTo][k - 1]

    # Case 2

    withKSubPathA = pathLengths[vfrom][k][k - 1]

    withKSubPathB = pathLengths[k][vTo][k - 1]

    pathLengths[vFrom][vTo][k] = min(

      withoutK,

      withKSubPathA + withKSubPathB

    )
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