
Floyd-Warshall Algorithm
For Solving the All-Pairs Shortest

Path Problem
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

• Discuss and analyze the Floyd-Warshall Algorithm

Exercise

• None

2

All-Pairs Shortest Path Problem

Compute the shortest path from every vertex to every other vertex

• Input: a weighted graph (no need for a start vertex)

• Output:
• Shortest path from u → v for all values of u and v

• Or report that a negative cycle has been discovered

• Can we solve this problem with what we know already?

3

SSSP → APSP

How do we turn a solution to the single-source shortest path (SSSP)
problem into a solution for the all-pairs shortest path (APSP) problem?

• This is called a reduction!

• How many times do we need to run a SSSP procedure for APSP?

a. 1
b. n – 1
c. n
d. n2

4

SSSP algorithms

Running time of APSP if we don’t allow negative edges?

• n * O(Dijkstra’s Algorithm) = O(n m lg n)

• For sparse graphs: O(n2 lg n)

• For dense graphs: O(n3 lg n)

Running time of APSP if we do allow negative edges?

• n * O(Bellman-Ford) = O(n2 m)

• For sparse graphs: O(n3)

• For dense graphs: O(n4)

5

Consider APSP on dense graphs.

• How many values are we going to output?

• What is the potential length of a shortest path?

• What is the lower bound on the running time of APSP?

• It is tempting to say that the lower bound is n3

• However, this lower bound has yet to be determined

• Consider the matrix multiplication procedure developed by Strassen

n2

n -1

6

Specialized APSP Algorithm

• Although we can use Bellman-Ford and Dijkstra’s algorithms, there
are, in fact, specialized APSP algorithms

• The Floyd-Warshall algorithm solves the APSP problem
deterministically in O(n3) on all types of graph

• It works with negative edge lengths

• Meaning that is is as good as Bellman-Ford for sparse graphs,

• And much better than Bellman-Ford for dense graphs.

7

Question

• What algorithm would you choose for sparse graphs?
• Dijkstra’s n times if there are no negative edges, Floyd-Warshall otherwise

• What algorithm would you choose for dense graphs?
• Always Floyd-Warshall

Sparse Graphs Dense Graphs

Dijkstra’s n times O(n2 lg n) O(n3 lg n)

Bellman-Ford n times O(n3) O(n4)

Floyd-Warshall O(n3) O(n3)

8

Optimal Substructure for APSP

Key concept:

• label the vertices 1 though n (giving them an arbitrary order),

• and then introduce the notation V(k) = {1, 2, …, k}

Optimal Substructure Lemma:

• Assume, for now, that the graph does not include a negative cycle

• Fix a source vertex i, a destination vertex j, and a value for k

• Then let P be the shortest i → j path with internal nodes from V(k)

9

Example Substructure

Optimal Substructure Lemma:

• Fix a source vertex i, a destination vertex j, and a value for k

• Then let P be the shortest i → j path with internal nodes from V(k)

17

7

32

10

1
12

5 15

10

V(k) = {1, 2, …, k}

Example Substructure

Optimal Substructure Lemma:

• Fix a source vertex i, a destination vertex j, and a value for k

• Then let P be the shortest i → j path with internal nodes from V(k)

17

7

32

10

1
12

5 15

i = 17
j = 10

11

V(k) = {1, 2, …, k}

Example Substructure

Optimal Substructure Lemma:

• Fix a source vertex i, a destination vertex j, and a value for k

• Then let P be the shortest i → j path with internal nodes from V(k)

17

7

32

10

1
12

5 15

i = 17
j = 10

12

V(k) = {1, 2, …, k}

Example Substructure

Optimal Substructure Lemma:

• Fix a source vertex i, a destination vertex j, and a value for k

• Then let P be the shortest i → j path with internal nodes from V(k)

17

7

32

10

1
12

5 15

i = 17
j = 10

2

-4

5

-10-10

What is the
value of the

shortest path
found by FW?

13

V(k) = {1, 2, …, k}

Example Substructure

Optimal Substructure Lemma:

• Fix a source vertex i, a destination vertex j, and a value for k

• Then let P be the shortest i → j path with internal nodes from V(k)

17

7

32

10

1
12

5 15

i = 17
j = 10
k = 5

2

-4

5

-10-10

What is the
value of the

shortest path
found by FW?

14

V(k) = {1, 2, …, k}

Optimal Substructure Lemma

Suppose that G has no negative cycles. Let P be the shortest (cycle-
free) path i → j , where all internal nodes come from V(k). Then:

• Case 1: if k is not internal to P, then P is also a shortest path i → j with
all internal nodes from V(k - 1).

• Case 2: if k is internal to P, then:
• Let P1 = the shortest i→k path with nodes from V(k - 1), and
• Let P2 = the shortest k→j path with nodes from V(k - 1)

• Effectively, k splits the path into two optimal subproblems

15

Picture of our cases

i < k < k < k jCase 1

i < k < k jkCase 2

P

P2P1

16

Floyd-Warshall Algorithm Base Cases

Let A = 3D array, where A[i, j, k] = the length of the shortest i → j path
with all internal nodes from {1, 2, ..., k}

• Which index (i, j, or k) do you think represents our base case?

What is the value of A[i, j, 0] when…

• i = j?

• there is a direct edge from i to j

• there is no edge directly connecting i to j

0

cij

∞

17

FUNCTION FloydWarshall(graph)

 # Base 1 indexing for vertices labeled 1 through n

 pathLengths = [n by n by (n + 1) array]

 # Base case

 FOR vFrom IN [1 ..= n]

 FOR vTo IN [1 ..= n]

 IF i == j

 length = 0

 ELSE IF graph.hasEdge(vFrom, vTo)

 length = graph.edges[vFrom][vTo].weight

 ELSE

 length = INFINITY

 pathLengths[vFrom][vTo][0] = length

 # Table building

 continued next slide…

18

FUNCTION FloydWarshall(graph)

 # Base 1 indexing for vertices labeled 1 through n

 pathLengths = [n by n by (n + 1) array]

 # Base case

 cut from previous slide…

 # Table building

 FOR k IN [1 ..= n]

 FOR vFrom IN [1 ..= n]

 FOR vTo IN [1 ..= n]

 # Case 1

 withoutK = pathLengths[vFrom][vTo][k - 1]

 # Case 2

 withKSubPathA = pathLengths[vfrom][k][k - 1]

 withKSubPathB = pathLengths[k][vTo][k - 1]

 pathLengths[vFrom][vTo][k] = min(

 withoutK,

 withKSubPathA + withKSubPathB

)

19

Floyd-Warshall Algorithm

Running time?

• O(n3)

Correctness?

• Substructure lemma

• Where are the final answers?
• How does it handle negative cycles?

• Reconstruction is similar to other dynamic programming problems.

Table building

FOR k IN [1 ..= n]

 FOR vFrom IN [1 ..= n]

 FOR vTo IN [1 ..= n]

 # Case 1

 withoutK = pathLengths[vFrom][vTo][k - 1]

 # Case 2

 withKSubPathA = pathLengths[vfrom][k][k - 1]

 withKSubPathB = pathLengths[k][vTo][k - 1]

 pathLengths[vFrom][vTo][k] = min(

 withoutK,

 withKSubPathA + withKSubPathB

)

20

	Slide 1: Floyd-Warshall Algorithm For Solving the All-Pairs Shortest Path Problem
	Slide 2: Outline
	Slide 3: All-Pairs Shortest Path Problem
	Slide 4: SSSP  APSP
	Slide 5: SSSP algorithms
	Slide 6: Consider APSP on dense graphs.
	Slide 7: Specialized APSP Algorithm
	Slide 8: Question
	Slide 9: Optimal Substructure for APSP
	Slide 10: Example Substructure
	Slide 11: Example Substructure
	Slide 12: Example Substructure
	Slide 13: Example Substructure
	Slide 14: Example Substructure
	Slide 15: Optimal Substructure Lemma
	Slide 16: Picture of our cases
	Slide 17: Floyd-Warshall Algorithm Base Cases
	Slide 18
	Slide 19
	Slide 20: Floyd-Warshall Algorithm

