Minimum Spanning Tree

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

* Discuss spanning tree and minimum spanning trees (MSTs)
* Introduce Prim’s algorithms for MSTs
* Prove correctness of Prim’s MST Algorithm

 MIST exercise questions 1 and 2

Extra Resources

* Introduction to Algorithms, 3rd, chapter 23
* Algorithms llluminated Part 3, Chapter 15

Minimum Spanning Tree

Given a graph, connect all points together as cheaply as possible.

Why are we talking about this?
* It is a fundamental graph problem,
* It has several greedy-based solutions,

* And it has many applications:
* Clustering
* Networking
* Many more

. Bernard Chazelle (1995)
G reedy So | ution developed a non-greedy algorithm

that runs in O(m a(m,n)).

e Otakar Boruvka in 1926

* Vojtéch Jarnik in 1930
* Rediscovered by Robert Prim in 1957
* Rediscovered by Edsger Dijkstra in 1959

* Joseph Kruskal in 1956

Blazingly fast algorithm for what you get as output:

e Canrunin O(m Ig n)

 Remember: it takes O(n + m) just to read the graph!

* There are an number of possible spanning trees

Minimum Spanning Tree

Input: a weighted, undirected graph G =(V, E)

* A similar problem can be constructed for directed graphs, and it is then
called the optimal branching problem

* Each edge e has a cost
* Costs can be negative

Output: the minimum cost tree T that all vertices
 Calculate cost as the sum of all edge costs

 What does it mean to span a graph?

* The tree T is just a subset of

Spanning Tree Properties

1. The spanning tree T does not have any cycles

2. The subgraph (V, T) is connected

Spanning Tree Properties

1. The spanning tree T does not have any cycles

2. The subgraph (V, T) is connected

What is a spanning tree

for this graph?

This is not the minimum
spanning tree

MST Problem Assumptions

1. Theinput graph is connected

* This is easy to check. How?
e Otherwise we’re looking at the minimum spanning problem

2. Edge costs are distinct

* All mentioned algorithms are correct with ties, but
* |t makes our correctness proof much easier if we assume no ties

Prim’s Algorithm (aka Jarnik’s or Dijkstra’s)

* A greedy algorithm that finds an MIST for a weighted, undirected graph.

* It finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is minimized.

What is a good criteria 3
for finding the 4 2
minimum spanning tree?

10

Prim’s Algorithm

* A greedy algorithm that finds an MIST for a weighted, undirected graph.

* It finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is minimized.

What is a good criteria

for finding the 4 2
minimum spanning tree?

11

FUNCTION Prims (G, start vertex)

found = {start vertex}

mst = {}

mst cost = 0

WHILE found.size != G.vertices.size

min welight, min edge = INFINITY, NONE
FOR v IN found
FOR vOther, weight IN G.edges|[V]
IF vOther NOT IN found
IF weight < min weilght
min weight = weight
min edge = (v, vOther)

found.add (min edge[1l])

mst.add (min edge)
mst cost = mst cost + min weight

RETURN mst, mst cost

12

FUNCTION Prims (G, start vertex)

fmtmd T} {start_vertex| How does this compare
ms =
mst cost = 0 with Dijkstra’s Algorithm?

WHILE found.size != G.vertices.size

min welight, min edge = INFINITY, NONE
FOR v IN found
FOR vOther, weight IN G.edges|[V]
IF vOther NOT IN found
IF weight < min weight
min weight = weight

min_edge = (v, vOther) Each iteration:
found.add (min edge[1l]) Extend MST in
mst.add (min edge) cheapest
mst cost = mst cost + min weight manner possible

13

RETURN mst, mst cost

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree
2. And that T is the minimum spanning tree

We need to define a few things before we conduct the proof

Graph Cuts

A cut of any graph G = (V, E) is a partition of V into two non-empty groups

A B

For a graph with n vertices, how
many possible cuts are there?

a. O(n)

b. O(n?)
c. O(2M)
d. O(n")

Graph Cuts

A cut of any graph G = (V, E) is a partition of V into two non-empty groups

For a graph with n vertices, how
many possible cuts are there?

a. O(n)
b. O(n?)
c. O(2M)
d. O(n")

17

Lemma 1: Empty Cuts

Empty Cut Lemma: a graph is not connected if

there exists a cut (A, B) with zero crossing edges. O O O

Proof A:

 Assume we have a cut with zero crossing
edges

* PickanyuinAandvinB
* There is no path from u to
* Thus the graph is not connected

Proof B:
* Assume the graph is not connected

Suppose G has no path from u to

Put all vertices reachable from u into A

Put all other vertices in B

Thus, no edges cross the cut

Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be one more edge in
that crosses the cut.

e O
O

Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge

crossing the cut (A, B). Then, there must be
that crosses the cut.

one more edge in C

20

Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge

crossing the cut (A, B). Then, there must be
that crosses the cut.

one more edge in C

21

Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be one more edge in
that crosses the cut.

No Cycle Corollary: if € is the only edge crossing) O
some cut (A, B), then it is not in any cycle.
® O

®/\e@

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:
1. That Prim’s algorithm creates a spanning tree
2. And that T is the minimum spanning tree

We'll use graph cuts, the double-crossing lemma, and the no-cycle
lemma in this proof.

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:
1. That Prim’s algorithm creates a spanning tree T*
2. And that T is the minimum spanning tree

We'll use graph cuts, the double-crossing lemma, and the no-cycle
lemma in this proof.

24

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that mst spans

FUNCTION Prims (G, start vertex)

found = {start vertex}

mst = {}

mst cost = 0

WHILE found.size != G.vertices.size

min weight, min edge = INFINITY, NONE

FOR v IN found
FOR vOther, weight IN G.edges|[V]
IF vOther NOT IN found
IF weight < min weilght
min welght = weight
min edge = (v, vOther)
found.add (min edge[1l])
mst.add (min edge)
mst cost = mst cost + min weight

RETURN mst, mst cost

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans

Simplified Pseudocode for Prim’s Algorithm

1s}
empty

while is not V:
let e = (u, v) be the cheapest edge of
with u in and v not in
add e to
add v to

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

add e to T
add v to X

with u in X and v not in X

o

Assume the graph is connected. X 6

V-X

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of
with u in X and v not in X

add e to T
add v to X

-

(o e?

V-X

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of
with u in X and v not in X

add e to T
add v to X

s

(¢ e?

V-X

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains

the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains

the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of
with u in X and v not in X

add e to T
add v to X

(oe?

V-X

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of
with u in X and v not in X

add e to T
add v to X

legfe @

V-X

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X

Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that = spans

2. The algorithm is guaranteed to terminate with X =V

41

Simplified Pseudocode for Prim’s Algorithm

= {s} 2. The algorithm is
= empty guaranteed to terminate
with X =V

while X is not V:
let e = (u, v) be the cheapest edge of
with u in and v not 1n
add e to

If the algorithm does not terminate,
add v to

then by the Empty cut Lemma the
input graph must be disconnected.

Claim 1: Prim’s outputs a spanning tree
Prim’s algorithm maintains the invariant that spans -
The algorithm is guaranteed to terminate with =

The set of edges, T, does not contain any cycles

w o=

43

Simplified Pseudocode for Prim’s Algorithm

{s} 3. The set of edges, T, does
empty not contain any cycles

while X is not V:
let e = (u, v) be the cheapest edge of
with u in and v not 1n
add e to

By the No cycle corollary, the
add v to Y

addition of e cannot create a cycle
(it is the only edge to cross the cut).

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans

2. The algorithm is guaranteed to terminate with X =V
* Could anything go wrong here?

* Under what circumstances cannot we not find an edge to
cross the cut (X, V - X)?

* By the Empty cut Lemma the input graph must be disconnected
* However, we stated that only connected graphs would be used as inputs

3. The algorithm is guaranteed to create a tree (no cycles)
e Consider any iteration and our sets X and
e Suppose we add an edge e to
* The edge e must be the first edge to cross (X, V - X) being added to
* By the No cycle corollary, the addition of e cannot create a cycle (only edge to cross the cut)

Claim 1: Prim’s outputs a sp~

1. Prim’s algorithm maintains the invariar’

2. The algorithm is guaranteed to te
e Could anytbh* ~ng here?

e Under wh' “nNNo’
cross the

e BytheEm,
* However, we

(0]

.sconnected
ould be used as inputs

3. Thealgorithmis g cree (no cycles)
* Consider any iteratior.
e Suppose we add an edg
* The edge e must be the 1,

* By the No cycle corollary, t

(X, V-X) beingaddedto T
e cannot create a cycle (only edge to cross the cut)

46

Claim 2: Prim’s outputs the Minimum ST

Before we can prove that the output is an MST, we need another helper
definition
e Consider an edge e of G

* Suppose you can find a cut (A, B) such that e is the cheapest edge of
G that crosses (A, B)

* Cut Property: e belongs to the MST of G ° 1 °

4 2

© ©

e Assume that this is true! We’ll prove it later

Claim 2: Prim’s outputs the MST

e Claim: the Cut Property implies that Prim’s algorithm outputs the MST

Simplified Pseudocode for Prim’s Algorithm

= {s} Claim: the Cut Property implies
= empty that Prim’s algorithm outputs
the MST

while X is not V:
let e = (u, v) be the cheapest edge of
with u in and v not 1n
add e to

Cut Property: if e is the cheapest
add v to

edge that crosses the cut (X, V — X)
then it must be in the MST.

Claim 2: Prim’s outputs the MST

e Claim: the Cut Property implies that Prim’s algorithm outputs the MST

* Key point: every edge e in T is explicitly chosen via the cut property

At any given iteration:
* The tree T is a subset of the MST
» After termination, we are guaranteed that T is a spanning tree

* Given the cut property, we are also now guaranteed that T is minimal
spanning tree

Claim 2: Prim’s outputs the M

am outputs the MST
. via the cut property

e Claim: the Cut Property implies the’

e Key point: everyedge einTise

At any giver
* The tree T is
» After terminatic « that T is a spanning tree

* Given the cut prop now guaranteed that T is minimal

spanning tree

51

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

_Need to prove two things:

1 That Prim’s algorithm creates a spanning tree

2. And that T* is the minimum spanning tree

* Need to prove the cut property!

Proof of the Cut Property

Assume distinct edge costs

* Here is where our assumption of distinct edge costs is useful.

Cut Property: if e is the cheapest edge that crosses the cut (X, V—X)
then it must be in the MIST

We are going to prove this using exchange argument contradiction

Proof of the Cut Property

Claim: Suppose there is an edge e that is the cheapest one to cross a
cut (X, V-X), but e is not in the MST

* What are we going to exchange?

ldea: exchange e with another edge in T* to make the cost of T* even
cheaper (which would result in a contradiction)

What edge in T* can we swap with e?

Proof of the Cut Property

The edge e is the cheapest to cross (X, V-X)

MST T* must contain some other edge that crosses (X, V-X), otherwise T* would be disconnected.

Let’s call this other edge f

Let’s try to exchange e and f to get a spanning tree that is cheaper than T*

56

Proof of the Cut Property

Yes

Is T* U {e} — {f} a spanning tree of G?

No

Only if e is the cheapest edge

Maybe

57

Proof of the Cut Property

Is T* U {e} — {f} a spanning tree of G?

Yes No Only if e is the cheapest edge Maybe

Proof of the Cut Property

Yes

Is T* U {e} — {f} a spanning tree of G?

No

Only if e is the cheapest edge

Maybe

59

Proof of the Cut Property

Is T* U {e} — {f} a spanning tree of G?

Yes No Only if e is the cheapest edge Maybe

Proof of the Cut Property

Hope: that we can always find a suitable edge « so that exchanging
edges yields a valid spanning tree

Solid green lines are those that are currently part of T*
Rainbow lines are other edges

Proof of the Cut Property

Hope: that we can always find a suitable edge « so that exchanging
edges yields a valid spanning tree

Solid green lines are those that are currently part of T*

62

Proof of the Cut Property

Add the edge e.

What does addlng e do? | Atree will always have n-1 edges It creates a cycle that crosses the cut!

Which one of these edges can we exchange with e?
Solid green lines are those that are currently part of T*

Proof of the Cut Property

* Let C be the cycle created in T* by adding the edge e
* Find all edges that cross (X, V-X)
* By the double-crossing Lemma, there must be an edge = that crosses (X, V-X)

Proof of the Cut Property

The exchange argument was easier for greedy scheduling

eletT= T U {e} — { } since every exchange resulted in a valid schedule

Proof of the Cut Property

sletT= T U{e}—{)

Proof of the Cut Property

sletT= T U{e}—{)
* T is also a spanning tree
* Since c. < c. Tis a cheaper spanning tree than T* (CONTRADICTION)

67

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree
2. And that T is the minimum spanning tree

* Need t

What is the running time of Prim’s?

Can we do better
than O(mn)?

1s}
empty

Can easily get to
O(m Ig n) using a heap
(or faster with a
Fibonacci Heap)

while is not V: | O(n) for this while loop
let e = (u, v) be the cheapest edge of
with u 1in and v not 1n

add e to O(m) to find cheapest edge
add v to that crosses the cut (X, V-X)

	Slide 1: Minimum Spanning Tree
	Slide 2: Outline
	Slide 3: Extra Resources
	Slide 4: Minimum Spanning Tree
	Slide 5: Greedy Solution
	Slide 6: Minimum Spanning Tree
	Slide 7: Spanning Tree Properties
	Slide 8: Spanning Tree Properties
	Slide 9: Our MST Problem Assumptions
	Slide 10: Prim’s Algorithm (aka Jarník’s or Dijkstra’s)
	Slide 11: Prim’s Algorithm
	Slide 12
	Slide 13
	Slide 15: Proof of Prim’s
	Slide 16: Graph Cuts
	Slide 17: Graph Cuts
	Slide 18: Lemma 1: Empty Cuts
	Slide 19: Lemma 2: Double-Crossings
	Slide 20: Lemma 2: Double-Crossings
	Slide 21: Lemma 2: Double-Crossings
	Slide 22: Lemma 2: Double-Crossings
	Slide 23: Proof of Prim’s
	Slide 24: Proof of Prim’s
	Slide 25: Claim 1: Prim’s outputs a spanning tree
	Slide 26: Claim 1: Prim’s outputs a spanning tree
	Slide 27: Simplified Pseudocode for Prim’s Algorithm
	Slide 28: Simplified Pseudocode for Prim’s Algorithm
	Slide 29: Simplified Pseudocode for Prim’s Algorithm
	Slide 30: Simplified Pseudocode for Prim’s Algorithm
	Slide 31: Simplified Pseudocode for Prim’s Algorithm
	Slide 32: Simplified Pseudocode for Prim’s Algorithm
	Slide 33: Simplified Pseudocode for Prim’s Algorithm
	Slide 34: Simplified Pseudocode for Prim’s Algorithm
	Slide 35: Simplified Pseudocode for Prim’s Algorithm
	Slide 36: Simplified Pseudocode for Prim’s Algorithm
	Slide 37: Simplified Pseudocode for Prim’s Algorithm
	Slide 38: Simplified Pseudocode for Prim’s Algorithm
	Slide 39: Simplified Pseudocode for Prim’s Algorithm
	Slide 40: Simplified Pseudocode for Prim’s Algorithm
	Slide 41: Claim 1: Prim’s outputs a spanning tree
	Slide 42: Simplified Pseudocode for Prim’s Algorithm
	Slide 43: Claim 1: Prim’s outputs a spanning tree
	Slide 44: Simplified Pseudocode for Prim’s Algorithm
	Slide 45: Claim 1: Prim’s outputs a spanning tree
	Slide 46: Claim 1: Prim’s outputs a spanning tree
	Slide 47: Claim 2: Prim’s outputs the Minimum ST
	Slide 48: Claim 2: Prim’s outputs the MST
	Slide 49: Simplified Pseudocode for Prim’s Algorithm
	Slide 50: Claim 2: Prim’s outputs the MST
	Slide 51: Claim 2: Prim’s outputs the MST
	Slide 52: Proof of Prim’s
	Slide 54: Proof of the Cut Property
	Slide 55: Proof of the Cut Property
	Slide 56: Proof of the Cut Property
	Slide 57: Proof of the Cut Property
	Slide 58: Proof of the Cut Property
	Slide 59: Proof of the Cut Property
	Slide 60: Proof of the Cut Property
	Slide 61: Proof of the Cut Property
	Slide 62: Proof of the Cut Property
	Slide 63: Proof of the Cut Property
	Slide 64: Proof of the Cut Property
	Slide 65: Proof of the Cut Property
	Slide 66: Proof of the Cut Property
	Slide 67: Proof of the Cut Property
	Slide 68: Proof of Prim’s
	Slide 69: What is the running time of Prim’s?

