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Outline

* Discuss spanning tree and minimum spanning trees (MSTs)
* Introduce Prim’s algorithms for MSTs
* Prove correctness of Prim’s MST Algorithm

 MIST exercise questions 1 and 2



Extra Resources

* Introduction to Algorithms, 3rd, chapter 23
* Algorithms llluminated Part 3, Chapter 15



Minimum Spanning Tree

Given a graph, connect all points together as cheaply as possible.

Why are we talking about this?
* It is a fundamental graph problem,
* It has several greedy-based solutions,

* And it has many applications:
* Clustering
* Networking
* Many more



. Bernard Chazelle (1995)
G reedy So | ution developed a non-greedy algorithm

that runs in O(m a(m,n)).

e Otakar Boruvka in 1926

* Vojtéch Jarnik in 1930
* Rediscovered by Robert Prim in 1957
* Rediscovered by Edsger Dijkstra in 1959

* Joseph Kruskal in 1956

Blazingly fast algorithm for what you get as output:

e Canrunin O(m Ig n)

 Remember: it takes O(n + m) just to read the graph!

* There are an number of possible spanning trees



Minimum Spanning Tree

Input: a weighted, undirected graph G =(V, E)

* A similar problem can be constructed for directed graphs, and it is then
called the optimal branching problem

* Each edge e has a cost
* Costs can be negative

Output: the minimum cost tree T that all vertices
 Calculate cost as the sum of all edge costs

 What does it mean to span a graph?

* The tree T is just a subset of



Spanning Tree Properties

1. The spanning tree T does not have any cycles

2. The subgraph (V, T) is connected




Spanning Tree Properties

1. The spanning tree T does not have any cycles

2. The subgraph (V, T) is connected

What is a spanning tree

for this graph?

This is not the minimum
spanning tree




MST Problem Assumptions

1. Theinput graph is connected

* This is easy to check. How?
e Otherwise we’re looking at the minimum spanning problem

2. Edge costs are distinct

* All mentioned algorithms are correct with ties, but
* |t makes our correctness proof much easier if we assume no ties



Prim’s Algorithm (aka Jarnik’s or Dijkstra’s)

* A greedy algorithm that finds an MIST for a weighted, undirected graph.

* It finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is minimized.

What is a good criteria 3
for finding the 4 2
minimum spanning tree?
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Prim’s Algorithm

* A greedy algorithm that finds an MIST for a weighted, undirected graph.

* It finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is minimized.

What is a good criteria

for finding the 4 2
minimum spanning tree?
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FUNCTION Prims (G, start vertex)

found = {start vertex}

mst = {}

mst cost = 0

WHILE found.size != G.vertices.size

min welight, min edge = INFINITY, NONE
FOR v IN found
FOR vOther, weight IN G.edges|[V]
IF vOther NOT IN found
IF weight < min weilght
min weight = weight
min edge = (v, vOther)

found.add (min edge[1l])

mst.add (min edge)
mst cost = mst cost + min weight

RETURN mst, mst cost
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FUNCTION Prims (G, start vertex)

fmtmd T} {start_vertex| How does this compare
ms =
mst cost = 0 with Dijkstra’s Algorithm?

WHILE found.size != G.vertices.size

min welight, min edge = INFINITY, NONE
FOR v IN found
FOR vOther, weight IN G.edges|[V]
IF vOther NOT IN found
IF weight < min weight
min weight = weight

min_edge = (v, vOther) Each iteration:
found.add (min edge[1l]) Extend MST in
mst.add (min edge) cheapest
mst cost = mst cost + min weight manner possible
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RETURN mst, mst cost




Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree
2. And that T is the minimum spanning tree

We need to define a few things before we conduct the proof



Graph Cuts

A cut of any graph G = (V, E) is a partition of V into two non-empty groups

A B

For a graph with n vertices, how
many possible cuts are there?

a. O(n)

b. O(n?)
c. O(2M)
d. O(n")
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Lemma 1: Empty Cuts

Empty Cut Lemma: a graph is not connected if

there exists a cut (A, B) with zero crossing edges. O O O

Proof A:

 Assume we have a cut with zero crossing
edges

* PickanyuinAandvinB
* There is no path from u to
* Thus the graph is not connected

Proof B:
* Assume the graph is not connected

Suppose G has no path from u to

Put all vertices reachable from u into A

Put all other vertices in B

Thus, no edges cross the cut



Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be one more edge in
that crosses the cut.

e O
O



Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge

crossing the cut (A, B). Then, there must be
that crosses the cut.

one more edge in C
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Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
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Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be one more edge in
that crosses the cut.

No Cycle Corollary: if € is the only edge crossing ) O
some cut (A, B), then it is not in any cycle.
® O

®/\e@




Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:
1. That Prim’s algorithm creates a spanning tree
2. And that T is the minimum spanning tree

We'll use graph cuts, the double-crossing lemma, and the no-cycle
lemma in this proof.



Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:
1. That Prim’s algorithm creates a spanning tree T*
2. And that T is the minimum spanning tree

We'll use graph cuts, the double-crossing lemma, and the no-cycle
lemma in this proof.
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Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that mst spans

FUNCTION Prims (G, start vertex)

found = {start vertex}

mst = {}

mst cost = 0

WHILE found.size != G.vertices.size

min weight, min edge = INFINITY, NONE

FOR v IN found
FOR vOther, weight IN G.edges|[V]
IF vOther NOT IN found
IF weight < min weilght
min welght = weight
min edge = (v, vOther)
found.add (min edge[1l])
mst.add (min edge)
mst cost = mst cost + min weight

RETURN mst, mst cost



Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans



Simplified Pseudocode for Prim’s Algorithm

1s}
empty

while is not V:
let e = (u, v) be the cheapest edge of
with u in and v not in
add e to
add v to



Simplified Pseudocode for Prim’s Algorithm

X
-

1s}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

add e to T
add v to X

with u in X and v not in X

o

Assume the graph is connected. X 6

V-X
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Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that = spans

2. The algorithm is guaranteed to terminate with X =V
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Simplified Pseudocode for Prim’s Algorithm

= {s} 2. The algorithm is
= empty guaranteed to terminate
with X =V

while X is not V:
let e = (u, v) be the cheapest edge of
with u in and v not 1n
add e to

If the algorithm does not terminate,
add v to

then by the Empty cut Lemma the
input graph must be disconnected.




Claim 1: Prim’s outputs a spanning tree
Prim’s algorithm maintains the invariant that  spans -
The algorithm is guaranteed to terminate with =

The set of edges, T, does not contain any cycles

w o=

43



Simplified Pseudocode for Prim’s Algorithm

{s} 3. The set of edges, T, does
empty not contain any cycles

while X is not V:
let e = (u, v) be the cheapest edge of
with u in and v not 1n
add e to

By the No cycle corollary, the
add v to Y

addition of e cannot create a cycle
(it is the only edge to cross the cut).




Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans

2. The algorithm is guaranteed to terminate with X =V
* Could anything go wrong here?

* Under what circumstances cannot we not find an edge to
cross the cut (X, V - X)?

* By the Empty cut Lemma the input graph must be disconnected
* However, we stated that only connected graphs would be used as inputs

3. The algorithm is guaranteed to create a tree (no cycles)
e Consider any iteration and our sets X and
e Suppose we add an edge e to
* The edge e must be the first edge to cross (X, V - X) being added to
* By the No cycle corollary, the addition of e cannot create a cycle (only edge to cross the cut)




Claim 1: Prim’s outputs a sp~

1. Prim’s algorithm maintains the invariar’

2. The algorithm is guaranteed to te
e Could anytbh* ~ng here?

e Under wh' “nNNo’
cross the

e BytheEm,
* However, we

(0]

.sconnected
ould be used as inputs

3. Thealgorithmis g cree (no cycles)
* Consider any iteratior.
e Suppose we add an edg
* The edge e must be the 1,

* By the No cycle corollary, t

(X, V-X) beingaddedto T
e cannot create a cycle (only edge to cross the cut)
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Claim 2: Prim’s outputs the Minimum ST

Before we can prove that the output is an MST, we need another helper
definition
e Consider an edge e of G

* Suppose you can find a cut (A, B) such that e is the cheapest edge of
G that crosses (A, B)

* Cut Property: e belongs to the MST of G ° 1 °

4 2

© ©

e Assume that this is true! We’ll prove it later




Claim 2: Prim’s outputs the MST

e Claim: the Cut Property implies that Prim’s algorithm outputs the MST




Simplified Pseudocode for Prim’s Algorithm

= {s} Claim: the Cut Property implies
= empty that Prim’s algorithm outputs
the MST

while X is not V:
let e = (u, v) be the cheapest edge of
with u in and v not 1n
add e to

Cut Property: if e is the cheapest
add v to

edge that crosses the cut (X, V — X)
then it must be in the MST.




Claim 2: Prim’s outputs the MST

e Claim: the Cut Property implies that Prim’s algorithm outputs the MST

* Key point: every edge e in T is explicitly chosen via the cut property

At any given iteration:
* The tree T is a subset of the MST
» After termination, we are guaranteed that T is a spanning tree

* Given the cut property, we are also now guaranteed that T is minimal
spanning tree



Claim 2: Prim’s outputs the M

am outputs the MST
. via the cut property

e Claim: the Cut Property implies the’

e Key point: everyedge einTise

At any giver
* The tree T is
» After terminatic « that T is a spanning tree

* Given the cut prop now guaranteed that T is minimal

spanning tree
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Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

_Need to prove two things:

1 That Prim’s algorithm creates a spanning tree

2. And that T* is the minimum spanning tree

* Need to prove the cut property!



Proof of the Cut Property

Assume distinct edge costs

* Here is where our assumption of distinct edge costs is useful.

Cut Property: if e is the cheapest edge that crosses the cut (X, V—X)
then it must be in the MIST

We are going to prove this using exchange argument contradiction




Proof of the Cut Property

Claim: Suppose there is an edge e that is the cheapest one to cross a
cut (X, V-X), but e is not in the MST

* What are we going to exchange?

ldea: exchange e with another edge in T* to make the cost of T* even
cheaper (which would result in a contradiction)

What edge in T* can we swap with e?



Proof of the Cut Property

The edge e is the cheapest to cross (X, V-X)

MST T* must contain some other edge that crosses (X, V-X), otherwise T* would be disconnected.

Let’s call this other edge f

Let’s try to exchange e and f to get a spanning tree that is cheaper than T*
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Proof of the Cut Property

Yes

Is T* U {e} — {f} a spanning tree of G?

No

Only if e is the cheapest edge

Maybe
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Proof of the Cut Property

Is T* U {e} — {f} a spanning tree of G?

Yes No Only if e is the cheapest edge Maybe




Proof of the Cut Property

Yes

Is T* U {e} — {f} a spanning tree of G?

No

Only if e is the cheapest edge

Maybe
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Proof of the Cut Property

Is T* U {e} — {f} a spanning tree of G?

Yes No Only if e is the cheapest edge Maybe




Proof of the Cut Property

Hope: that we can always find a suitable edge « so that exchanging
edges yields a valid spanning tree

Solid green lines are those that are currently part of T*
Rainbow lines are other edges




Proof of the Cut Property

Hope: that we can always find a suitable edge « so that exchanging
edges yields a valid spanning tree

Solid green lines are those that are currently part of T*
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Proof of the Cut Property

Add the edge e.

What does addlng e do? | Atree will always have n-1 edges It creates a cycle that crosses the cut!

Which one of these edges can we exchange with e?
Solid green lines are those that are currently part of T*




Proof of the Cut Property

* Let C be the cycle created in T* by adding the edge e
* Find all edges that cross (X, V-X)
* By the double-crossing Lemma, there must be an edge = that crosses (X, V-X)




Proof of the Cut Property

The exchange argument was easier for greedy scheduling

eletT= T U {e} — { } since every exchange resulted in a valid schedule




Proof of the Cut Property

sletT= T U{e}—{)




Proof of the Cut Property

sletT= T U{e}—{)
* T is also a spanning tree
* Since c. < c. Tis a cheaper spanning tree than T* (CONTRADICTION)
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Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree
2. And that T is the minimum spanning tree

* Need t




What is the running time of Prim’s?

Can we do better
than O(mn)?

1s}
empty

Can easily get to
O(m Ig n) using a heap
(or faster with a
Fibonacci Heap)

while is not V: | O(n) for this while loop
let e = (u, v) be the cheapest edge of
with u 1in and v not 1n

add e to O(m) to find cheapest edge
add v to that crosses the cut (X, V-X)
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