Universal Hashing

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Hash Tables

Operations:

* |[nsert

e Delete What are they
+ Look-up not good for?

Guaranteed constant running time for those operations if:
1. If the hash table is properly implemented, and
2. The datais non-pathological.

Pathological Data Sets

 We want our hash functions to “spread-out” the data
(i.e., minimize collisions)

* Unfortunately, no perfect hash function exists (it’s impossible)

* You can create a pathological data set for hash function

Purposefully select only the elements
that map to the same bucket.

Pathological Data Sets

Fix (create) the hash function h(x) =2 {0, 1, ..., n-1},
where n is the number of buckets in the hash table and n << |U|

With the pigeonhole principle, there must exist a bucket i,
such that at least |U|/n elements of U hash to i under h

1
-\~ =

Pathological Data Set Example

e We want to store student student ID numbers in a hash table.
e We will store about students worth of data
e Let’s use a hash table with 87 buckets

e Let’s use the final three numbers as the hash

Output:
s = 30 Number of unique student IDs:
N Number of unique hash values:

Number of unique student IDs:

def hash fcn (id number) : i
Number of unique hash values:

o)

return id_number $ n

30
28

30

id numbers = [randint (1000000, 9999999) for in range (s)]
hash values = map(hash fcn, id numbers)

print ('Number of unique student IDs:', len(set(id numbers)))
print ('Number of unique hash values:', len(set(hash values)))

id numbers pathological = [round (num, -2) for num in i1d numbers]

hash values pathological = map(hash fcn, i1id numbers pathological)

print ('Number of unique student IDs:', len(set(id numbers pathological)))
print ('Number of unique hash values:', len(set(hash values pathological)))

Real World Pathological Data

e Denial of service attack (DOS)

* A study in 2003 found that they could interrupt the service of any
server with the following attributes:

1. The server used an open-source hash table
2. The hash table uses an easy-to-reverse-engineer hash function

* How does reverse engineering the hash function help an attacker?

Solutions to Pathological Data

Use a cryptographic hash function

* Infeasible to create pathological data for such a function
(but not theoretically impossible)

Use randomization (Can still be an open-source implementation!)

1. Create a family of hash functions
2. Randomly pick one at

Universal Hashing

Let H be a set of hash functions mapping U to {0, 1, ..., n-1}

The family H is universal if and only if for all x, y in

Pr(h(x) = h(y)) £ 1/n RN E R R A E s RS aTetale)8

where h is chosen uniformly at random from H

Hash functions do not consistently map a set of inputs to the same bucket

12

Example: Hashing IP Addresses |U| =232 =256

4,294,967,296

* What is [/? And how bigis |/?
includes all IP addresses, which we’ll denote as 4-tuples
example: X = (x4, X5, X3, X;) where x; is in [0, 255]

* Let n = some prime number that is near a multiple of the number of
objects we expect to store
example: |S| =500, we set n =997

How large is the family of hash function?

e Let H be our set of hash functions
example: h(x) = A dot X mod n = (a;x; + a,X, + asx3 + azx,) mod n

where A = (a,, a,, a3, a,) and a, is in [0, n-1] IH| = n

H includes all combinations the coefficients in A

988 billion

h(x) = (a,X; + a,X, + a3X3 + a,X,) % N
Here are some members of H

* h(x)=(1:x;+ 1%, + 1:X5+ 1:%,) % n

* hg(x) = (0-xg + 127-%;, + 91-Xx3 + 88-X4) % n

* hy(x) = (14-x; + 13X, + 12:x3+ 11-%4) % n

14

n = 997

def ip hash fecn (X, A):

return sum([x * a for x, a in zip(X, A)]) % n
ip address = [randrange(256) for in range(4)] # 1.e., 192.168.3.7
hash coeff = [randrange(n) for in range (4)]

print ("IP address
print ("Hash coefficients
print ("Hash value

IP address

:", ".".join(map(str, 1ip address)))
:", hash coeff)
:", 1p hash fcn(ip address, hash coeff))

X4 X, X3 X4
227.75.113.191
a, a, as a,

Hash coefficients : [394, 429, 328, 78]

Hash value

97

15

Example: Hashing IP Addresses

Theorem: the family H is universal

of functions that map x and y to the same location

1
< —
total # of functions n

* Llet H be a of hash functions mapping U to {0, 1, ..., n-1}
* The family H is universal if and only if for all x, y in

* Pr(h(x) = h(y)) £ 1/n

 where h is chosen uniformly at random from

Hashing IP Addresses Proof

e Consider two distinct IP addresses X and

* Assume that x, # v, (they might differ in other places as well)
 The same argument will hold regardless of which part of the tuple we consider

* Based on our choice of h,, what is the probability of a collision?
* What fraction of hash functions (h,) cause a collision?

* Where h. is any of the hash function from H

* We want to show that < 1/n of the billions of hash functions have a
collision for X and

Theorem: for any possible hash function, the probability of a collision between objects Xand ¥V is < %

Hash functions are selected from the hash family by randomly generating four
values for 4

Collision between objects Xand V'

h(X) = h(Y)

(A-X)modn=(A-Y)modn
(ax, +ayx, +asx, +asx,) modn = (a, v, +a,v, +asv, +a,y,) modn

0=[a;(y; —x)+a,(y, —xy) +as(ys —x3) + a,(y, — x,)]Jmod n

19

n

Hash functions are selected from the hash family by randomly generating four
values for

0=| + + + |mod n

Something must be different between X'and V. Let’s assume that x, #

a,(x, —v,)modn = + + Jmod n

Non-zero value that depends on a, Assume n is prime.

From here we are going to fix our choices of 2, 2., and @, and let 2, continue to be
a random variable

Principle of Deferred Decisions

We want to show that for any value of 2, we have a - chance of a collision.

Something must be different between Yand V. Let’s assume that x, #

Non-zero value that depends on a, Assume n is prime.

a,(x, —y,) modn =] + + Jmod n

From here we are going to fix our choices of 2, 2., and @.and let 2, be a random
variable | Principle of Deferred Decisions

We want to show that for any value of 2, we have a - chance of a collision.

How many choices of a2, satisfy the above equation?

* Our RHS is some constant! It is just some number in n-1/because X, V,and a,, a., a-are fixed

* If nis a prime number, then the LHS is equally likely to be any number from /0, n
* This claim requires some number theory to properly prove

Unique multiplicative

Thus, based on our choice for a,, we have that n

X = (X1, X5, X3, X4) Where x; isin [0, 255]

Y = (Y1, Y2, V3, Ya) Wherey;isin [0, 255]

Prlme number for N A = (ay, a,, a3, ;) and a,isin [0, n-1]
|S| =500
n:7lx4=3’y4=1 n =997

a4(x4 = J’4) mod n h(x) = (4 - X) modn

And H includes all combinations for the coefficients in A

0 0
Different 1 2 :
ifrere What do we want in
hash 2 4
, the second column?
functions 3 6
from the 4 1
family H Different values indicate different
5 3 i
) c hash values, which is good.

a,(ey —ya)modn = [a;(y; —x) +a,(y, —x,) + as(ys — x3)Jmod n =

Prime number for n

n=7/,%=3,Y¥,=1 n=17/,%,=4,y,=1
a,(xy —y,) modn a,(xy —y,) modn

0 0 0 0
Different 1 2 1 3
hash 2 4 2 6
functions 3 6 3 2
from the 4 1 4 5
family H c 3 c 1

6 5 6 4

23

Non-Prime number for n

x4-y4 shares factors with n

n=8,%x,=3,y,=1 n=8x,=4,y,=1
s |_a,(xy —ys) modn

“ow s wm e ol

0 0 0
Different 2 1 3
hash 4 2 6
functions 6 3 1
:roml tllw_le 0 4 4
amiy 2 5 7
4 6 2
6 7 5

Summary

* We cannot create a hash function that prevents creation of a
pathological dataset

* As long as the hash function is known, a pathological dataset can be
created

 We can create families of hash functions that make it infeasible to
guess which hash function is in use

	Slide 1: Universal Hashing
	Slide 2: Hash Tables
	Slide 6: Pathological Data Sets
	Slide 7: Pathological Data Sets
	Slide 8: Pathological Data Set Example
	Slide 9
	Slide 10: Real World Pathological Data
	Slide 11: Solutions to Pathological Data
	Slide 12: Universal Hashing
	Slide 13: Example: Hashing IP Addresses
	Slide 14: h(x) = (a1x1 + a2x2 + a3x3 + a4x4) % n
	Slide 15
	Slide 16: Example: Hashing IP Addresses
	Slide 18: Hashing IP Addresses Proof
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Prime number for n
	Slide 23: Prime number for n
	Slide 24: Non-Prime number for n
	Slide 25: Summary

