Binary Search Trees

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

 Compare binary search trees with sorted arrays
* Discuss the importance of a binary search tree’s height
* Discuss common search tree algorithms

e Search tree exercise

Extra Resources

* Introduction to Algorithms, 3rd, chapter 12

Sorted Arrays IENICHECIETSECARENECIETS

Operation Running Time
Access O(1)
Search O(lg n)

Selection O(1)
Predecessor O(1)
Successor O(1)
Output (print) O(n)
Insert O(n)
Delete O(n)

Extract-Min O(n)

Given a set of

values, is a BST unique?
(ignore ties)

Binary Search Tree

Each node has:

* A pointer to a left subtree

A pointer to aright subtree

A pointer to a parent node

A piece of data (the key value)

All keys found in a left subtree must be less
than the key of the current node

All keys found in a right subtree must be
greater than the key of the current node

Trees and Graphs

* Trees are a special type of graph

* Trees cannot contain cycles ()

* Trees always have directed edges

* Trees have a single source (no incoming edges) vertex called

* All tree vertices have one (except , Which has no parents)
* Trees always have n-1 edges

 BST compared to Heap?
* Heap is always balanced, BSTs are not necessarily balanced
* They have different properties (where are lesser values?)

Balanced Binary Search Tree (vs Sorted Array)

Access O(1) = O(lg n)
Search O(lg n)
Selection O(1) = O(lg n)
Predecessor O(1) = O(lg n)
Successor O(1) = O(lg n)
Output (print) O(n)
Insert O(n) = O(lg n)
Delete O(n) = O(lg n)

Extract Min O(n) = O(lg n)

Height of a Binary Search Tree

* Given a set of keys, we have many different choices for creating a
binary search tree (we just have to satisfy the search tree properties)

Are th
@ |t O
BSTs? @

Height of a Binary Search Tree

* Given a set of keys, we have many different choices for creating a
binary search tree (we just have to satisfy the search tree properties)

Height of a Binary Search Tree

* Given a set of keys, we have many different choices for creating a
binary search tree (we just have to satisfy the search tree properties)

3 5
® O o
Q00 O O

Height of a Binary Search Tree

* Given a set of keys, we have many different choices for creating a
binary search tree (we just have to satisfy the search tree properties)

What is th
e heei]gl'ln?c ofe e
each tree? @
2

Height of a Binary Search Tree

* Given a set of keys, we have many different choices for creating a
binary search tree (we just have to satisfy the search tree properties)

e Which one is better?

Height of a Binary Search Tree

* Given a set of keys, we have many different choices for creating a
binary search tree (we just have to satisfy the search tree properties)

* If we have n nodes, what is the maximum height of the tree?

* If we have n nodes, what is the minimum height of the tree?

Searching a BST

Search the tree T for the key k
1. Start at the root node

2. Recursively:
1. Traverse left if k < current key
2. Traverse right if k > current key

3. Return the node when found or return NULL

Inserting into a BST

Insert the key k into the tree

1. Start at the root node
2. Search for the key k (probably won’t find it)
3. Create a new node and setup the correct pointer

Question

Given a binary search tree that is not necessarily or
unbalanced, what is the maximum number of hops needed to search
the tree or insert a new node?

Options:
a. 1
b. Ign

c. tree height
d. n

1 3 4 6 7 8 10 13 14

How do you find:

* Min .
- Max Exercise

* Predecessor (k)

* Successor (k)

* What is the running time?

1 3 4 6 7 8 10 13 14

How do you find:

* Min
* Max
* Predecessor (k)

* Successor (k)

* What is the running time?

1 3 4 6 7 8 10 13 14

How do you find:

* Min
* Max
* Predecessor (k)

* Successor (k)

* What is the running time?

1 3 4 6 7 8 10 13 14

How do you find:

* Min
* Max
* Predecessor (k)

* Successor (k)

* What is the running time?

1 3 4 6 7 8 10 13 14

How do you find:

* Min
* Max
* Predecessor (k)

* Successor (k)

* What is the running time?

How would you print all nodes ?

* |n-order traversal:

* Recursively visit nodes on the left
* Print out the current node
* Recursively visit nodes on the right

* What is the running time?

Post-Order Traversal

* Recursively visit nodes on the left
e Recursively visit nodes on the right
* “Visit” the current node

Pre-Order Traversal

* “Visit” the current node
* Recursively visit nodes on the left
* Recursively visit nodes on the right

ol o 1. What kind of traversal is this?
head .
title>DOM Walk Demo</title 2 What IS the OUtpUt?
body
header>140</header BODY
main HEADER
h1l>Hello CSCI 140 PO</h1 MATIN
ut : var indentLevel = 0; H1
li>MergeSort</li - , UL,
li>Breadth First Search</li var walk_the_DOM = function walk(node, func) {
li>Dijkstra's Algorithm</Ii func(node); bl
li>Binary Search Trees</Ii indentLevel++; bl
li>Conquer The World</li node = node.firstChild; L1
ul while (node) { LI
main if (node.nodeName !=="#text") { LI
footer>Prof. Clark</footer walk(node, func); FOOTER
}

node = node.nextSibling;

}

indentLevel--;

}

walk_the_DOM(document.body, function (node) {
console.log(" ".repeat(indentLevel) + node.nodeName);

1);

Deleting a node from a BST

Deletion is often the most difficult task for tree-
like structures

e Search for the key
e Case 1: If the node has no children then just delete
e Case 2: If the node has one child then splice it out

e Case 3:if the node has both children

* Find the node’s predecessor
* Swap the node with its predecessor
* Delete the node

Selection and Rank with a BST

How would you compute the ith order statistic using a BST?

ldea: store some metadata at each node

* Let size(x) =the number of nodes rooted at x (the number of nodes that can
be reached via the left and right children pointers

How would you calculate size(x)?
* What kind of traversal would this use (in order, pre, or post)?
e size(x) = size(left) + size(right) + 1

FUNCTION UpdateSizes (bst node)
IF bst node != NONE

UpdateSizes (bst node.left)
UpdateSizes (bst node.right)

bst node.size = bst node.left.size
+ bst node.right.size
+ 1
ELSE

RETURN 0

Selection and Rank with a BST

FUNCTION GetIthOrderStatistic(bst node, 1)
left child size = bst node.left.size

IF left child size == (i - 1)
RETURN bst_node.value 5

ELSE IF left child size > i .
RETURN GetIthOrderStatistic(bst node.left, 1) o

ELSE 1
new i = 1 - left child size - 1
RETURN GetIthOrderStatistic(bst node.right, new 1)

Binary Search Trees

* Why is balancing important?
 What is the worst-case height for a binary tree?

 Balanced tree: the height of a balanced tree stays O(lg n) after
insertions and deletions

* Many different types of balanced search trees:
* AVL Tree, Splay Tree, B Tree, Red-Black Tree

	Slide 1: Binary Search Trees
	Slide 2: Outline
	Slide 3: Extra Resources
	Slide 4: Sorted Arrays
	Slide 5: Binary Search Tree
	Slide 6: Trees and Graphs
	Slide 7: Balanced Binary Search Tree (vs Sorted Array)
	Slide 8: Height of a Binary Search Tree
	Slide 9: Height of a Binary Search Tree
	Slide 10: Height of a Binary Search Tree
	Slide 11: Height of a Binary Search Tree
	Slide 12: Height of a Binary Search Tree
	Slide 13: Height of a Binary Search Tree
	Slide 14: Searching a BST
	Slide 15: Inserting into a BST
	Slide 16: Question
	Slide 17: How do you find:
	Slide 18: How do you find:
	Slide 19: How do you find:
	Slide 20: How do you find:
	Slide 21: How do you find:
	Slide 22: How would you print all nodes in order?
	Slide 23: Post-Order Traversal
	Slide 24: Pre-Order Traversal
	Slide 25
	Slide 26: Deleting a node from a BST
	Slide 27: Selection and Rank with a BST
	Slide 28
	Slide 29: Selection and Rank with a BST
	Slide 30: Balanced Binary Search Trees

