
Binary Search Trees
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

• Compare binary search trees with sorted arrays

• Discuss the importance of a binary search tree’s height

• Discuss common search tree algorithms

Exercise

• Search tree exercise

Extra Resources

• Introduction to Algorithms, 3rd, chapter 12

Sorted Arrays

Operation
Access
Search

Selection
Predecessor

Successor
Output (print)

Insert
Delete

Extract-Min

Running Time
O(1)

O(lg n)
O(1)
O(1)
O(1)
O(n)
O(n)
O(n)
O(n)

3 6 10 11 17 23 30 36

Binary Search Tree
Each node has:

• A pointer to a left subtree

• A pointer to a right subtree

• A pointer to a parent node

• A piece of data (the key value)

Search tree property:

• All keys found in a left subtree must be less
than the key of the current node

• All keys found in a right subtree must be
greater than the key of the current node

Given a set of key values, is a BST unique?
(ignore ties)

Trees and Graphs

• Trees are a special type of graph

• Trees cannot contain cycles (acyclic)

• Trees always have directed edges

• Trees have a single source (no incoming edges) vertex called root

• All tree vertices have one parent (except root, which has no parents)

• Trees always have n-1 edges

• BST compared to Heap?
• Heap is always balanced, BSTs are not necessarily balanced

• They have different properties (where are lesser values?)

Balanced Binary Search Tree (vs Sorted Array)

Operation
 Access
 Search
 Selection
 Predecessor
 Successor
 Output (print)
 Insert
 Delete
 Extract Min

 Running Time
 O(1) → O(lg n)
 O(lg n)
 O(1) → O(lg n)
 O(1) → O(lg n)
 O(1) → O(lg n)
 O(n)
 O(n) → O(lg n)
 O(n) → O(lg n)
 O(n) → O(lg n)

Height of a Binary Search Tree

• Given a set of keys, we have many different choices for creating a
binary search tree (we just have to satisfy the search tree properties)

3

1 5

2 4

3

1

5

2

4

Are these
both valid

BSTs?

Height of a Binary Search Tree

• Given a set of keys, we have many different choices for creating a
binary search tree (we just have to satisfy the search tree properties)

3

1 5

2 4

3

1

5

2

4

Height of a Binary Search Tree

• Given a set of keys, we have many different choices for creating a
binary search tree (we just have to satisfy the search tree properties)

3

1 5

2 4

2

1

5

3

4

Height of a Binary Search Tree

• Given a set of keys, we have many different choices for creating a
binary search tree (we just have to satisfy the search tree properties)

3

1 5

2 4

2

1

5

3

4

What is the
height of

each tree?

Height of a Binary Search Tree

• Given a set of keys, we have many different choices for creating a
binary search tree (we just have to satisfy the search tree properties)

3

1 5

2 4

2

1

5

3

4
Which one is better?

Height of a Binary Search Tree

• Given a set of keys, we have many different choices for creating a
binary search tree (we just have to satisfy the search tree properties)

• If we have n nodes, what is the maximum height of the tree?

• If we have n nodes, what is the minimum height of the tree?

Searching a BST

Search the tree T for the key k

1. Start at the root node

2. Recursively:
1. Traverse left if k < current key

2. Traverse right if k > current key

3. Return the node when found or return NULL

Inserting into a BST

Insert the key k into the tree T

1. Start at the root node

2. Search for the key k (probably won’t find it)

3. Create a new node and setup the correct pointer

Question

Given a binary search tree that is not necessarily balanced or
unbalanced, what is the maximum number of hops needed to search
the tree or insert a new node?

Options:

a. 1

b. lg n

c. tree height

d. n

How do you find:

• Min

• Max

• Predecessor (k)

• Successor (k)

• What is the running time?

1 3 4 6 7 8 10 13 14

Exercise

How do you find:

• Min

• Max

• Predecessor (k)

• Successor (k)

• What is the running time?

1 3 4 6 7 8 10 13 14

How do you find:

• Min

• Max

• Predecessor (k)

• Successor (k)

• What is the running time?

1 3 4 6 7 8 10 13 14

How do you find:

• Min

• Max

• Predecessor (k)

• Successor (k)

• What is the running time?

1 3 4 6 7 8 10 13 14

How do you find:

• Min

• Max

• Predecessor (k)

• Successor (k)

• What is the running time?

1 3 4 6 7 8 10 13 14

How would you print all nodes in order?

• In-order traversal:
• Recursively visit nodes on the left

• Print out the current node

• Recursively visit nodes on the right

• What is the running time?

Post-Order Traversal

• Recursively visit nodes on the left

• Recursively visit nodes on the right

• “Visit” the current node +

+ *

3- 4

Pre-Order Traversal

• “Visit” the current node

• Recursively visit nodes on the left

• Recursively visit nodes on the right

<!DOCTYPE html>
<html>
<head>
 <title>DOM Walk Demo</title>

<body>
 <header>140</header>
 <main>
 <h1>Hello CSCI 140 PO</h1>

 MergeSort
 Breadth First Search
 Dijkstra's Algorithm
 Binary Search Trees
 Conquer The World

 </main>
 <footer>Prof. Clark</footer>

var indentLevel = 0;
var walk_the_DOM = function walk(node, func) {
 func(node);
 indentLevel++;
 node = node.firstChild;
 while (node) {
 if (node.nodeName !== "#text") {
 walk(node, func);
 }
 node = node.nextSibling;
 }
 indentLevel--;

}

walk_the_DOM(document.body, function (node) {
 console.log(" ".repeat(indentLevel) + node.nodeName);

});

1. What kind of traversal is this?
2. What is the output?

BODY

 HEADER

 MAIN

 H1

 UL

 LI

 LI

 LI

 LI

 LI

 FOOTER

Deleting a node from a BST

Deletion is often the most difficult task for tree-
like structures

• Search for the key
• Case 1: If the node has no children then just delete

• Case 2: If the node has one child then splice it out

• Case 3: if the node has both children
• Find the node’s predecessor

• Swap the node with its predecessor

• Delete the node

Selection and Rank with a BST

How would you compute the ith order statistic using a BST?

Idea: store some metadata at each node

• Let size(x) = the number of nodes rooted at x (the number of nodes that can
be reached via the left and right children pointers

How would you calculate size(x)?

• What kind of traversal would this use (in order, pre, or post)?

• size(x) = size(left) + size(right) + 1

1 1 1

1 3 2

35

9

FUNCTION UpdateSizes(bst_node)

IF bst_node != NONE

UpdateSizes(bst_node.left)

UpdateSizes(bst_node.right)

bst_node.size = bst_node.left.size

 + bst_node.right.size

 + 1

 ELSE

 RETURN 0

Selection and Rank with a BST

1 1 1

1 3 2

35

9

FUNCTION GetIthOrderStatistic(bst_node, i)

left_child_size = bst_node.left.size

IF left_child_size == (i - 1)

RETURN bst_node.value

ELSE IF left_child_size ≥ i

RETURN GetIthOrderStatistic(bst_node.left, i)

ELSE

new_i = i - left_child_size - 1

RETURN GetIthOrderStatistic(bst_node.right, new_i)

Balanced Binary Search Trees

• Why is balancing important?

• What is the worst-case height for a binary tree?

• Balanced tree: the height of a balanced tree stays O(lg n) after
insertions and deletions

• Many different types of balanced search trees:
• AVL Tree, Splay Tree, B Tree, Red-Black Tree

	Slide 1: Binary Search Trees
	Slide 2: Outline
	Slide 3: Extra Resources
	Slide 4: Sorted Arrays
	Slide 5: Binary Search Tree
	Slide 6: Trees and Graphs
	Slide 7: Balanced Binary Search Tree (vs Sorted Array)
	Slide 8: Height of a Binary Search Tree
	Slide 9: Height of a Binary Search Tree
	Slide 10: Height of a Binary Search Tree
	Slide 11: Height of a Binary Search Tree
	Slide 12: Height of a Binary Search Tree
	Slide 13: Height of a Binary Search Tree
	Slide 14: Searching a BST
	Slide 15: Inserting into a BST
	Slide 16: Question
	Slide 17: How do you find:
	Slide 18: How do you find:
	Slide 19: How do you find:
	Slide 20: How do you find:
	Slide 21: How do you find:
	Slide 22: How would you print all nodes in order?
	Slide 23: Post-Order Traversal
	Slide 24: Pre-Order Traversal
	Slide 25
	Slide 26: Deleting a node from a BST
	Slide 27: Selection and Rank with a BST
	Slide 28
	Slide 29: Selection and Rank with a BST
	Slide 30: Balanced Binary Search Trees

