Dijkstra’s Algorithm

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Dijkstra’s Single-Source
Shortest Path Algorithm

Outline

* Discuss graphs with edge weights
e Discuss shortest paths
* Discuss Dijkstra’s algorithm including a proof

* Dijkstra’s Algorithm

Extra Resources

* Introduction to Algorithms, 3rd, chapter 24
e Algorithms llluminated Part 2: Chapter 9

Dijkstra’s
Algorithm

Find the shortest path between a
start vertex s and every other vertex
in the graph G

Can halt the algorithm if you only
want to find shortest path to a
specific vertex (for example, a
destination city)

Uses:

* Network routing
e Path planning

* Etc.

W . conbinatorica . com

Dijkstra’s
Algorithm

Find the shortest path between a
start vertex s and every other vertex
in the graph G

Can halt the algorithm if you only
want to find shortest path to a
specific vertex (for example, a
destination city)

Uses:

* Network routing
e Path planning

* Etc.

AR

T . comnbinatorica. com

Dijkstra’s Algorithm

Input
¢ A graph G = (V,E) and
* A source vertex

Output
 for all vin V we output the length of the shortest path from - >
* you can also output the actual path, but we’ll just worry about length for now

Assumptions
* A path exists from © to every other node (how can we check this property?)
* All edge weights are non-negative

What is the shortest path from S to all other vertices?

How did we do shortest path before?

* BFS

* How can we modify that process to work for graphs with weighted
edges?

O 0 =50 O 0o ¢

* Why would we not want to do that?

10

min_length

FUNCTION Dijkstra(G, start_vertex) o _
found = {} This is now a set instead

lengths = {v: INFINITY FOR v IN G.vertices} of a dictionary

found.add(start_vertex)

lengths[start vertex] = ©
Dijkstra’s greedy criterion
WHILE found.length != G.vertices.length

FOR v IN found
FOR vOther, weight IN G.edges[V]
IF vOther NOT IN found
vOther length Clengths[v]) + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

Computed in previous
RETURN lengths iterations

11

V - found
(set)

vOther_length = lengths[v] + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths

12

FUNCTION Dijkstra(G, start vertex)
found = {}

lengths = {v: INFINITY FOR v IN G.vertices} i 2 X Q

found.add(start_vertex)
lengths[start vertex] = 0

Iteration 1:
WHILE found.length != G.vertices.length

FOR v IN found
FOR vOther, weight IN G.edges[V]
IF vOther NOT IN found
vOther_ length = lengths[v] + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths

13

FUNCTION Dijkstra(G, start vertex)
found = {}

lengths = {v: INFINITY FOR v IN G.vertices} i 2 X Q

found.add(start_vertex)
lengths[start vertex] = 0

Iteration 2:
WHILE found.length != G.vertices.length

FOR v IN found
FOR vOther, weight IN G.edges[V]
IF vOther NOT IN found
vOther_ length = lengths[v] + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths

14

Exercise

Dijkstra’s Algorithm with negative edges

* How might you deal with negative edges?
* How about adding some value to every edge?

-5

What is the shortest
path from s to t?

16

Dijkstra’s Algorithm with negative edges

* How might you deal with negative edges?
* How about adding some value to every edge?

What is the shortest
path from s to t?

17

Dijkstra’s Algorithm with negative edges

* How might you deal with negative edges?

* How about adding some value to every edge? What is the shortest
path fromstot?

We would add a different amount to each path!

18

Dijkstra’s Algorithm

* What have we done so far?
* We've only shown that it works for the given example.
* This is not enough to prove correctness.

* In general, examples are good for:
e Demonstration
 Contradictions

* They are not good for proving correctness.

Proof by Induction Cheat-sheet

Proof by induction that holds for all n

1.
2. Let’s assume that P(k) (where k < n) holds.
3.

4. Thus, by induction, holds for all n

P(1) holds because

holds because of P(k) and

v @ @ @ @ 6

B - - -

20

Proof by induction that holds for all n

holds because ...

CO r re Ct n eSS * Let’s assume that (where k < n) holds.
holds because of and ...
* Thus, by induction, holds for all n

Theorem for Dijkstra’s algorithm:

For every graph with non-negative edge lengths, Dijkstra’s algorithm
computes all shortest path distances from to every
other vertex

Base Case:
* lengths|]

1
Q)

Proof by induction that holds for all n
holds because ...

CO r r‘e Ct n eSS e Let’s assume that (where k < n) holds.

holds because of and ...

* Thus, by induction, holds for all n

Theorem for Dijkstra’s algorithm:

For every graph with non-negative edge lengths, Dijkstra’s algorithm
computes all shortest path distances from to every
other vertex

Inductive Hypothesis:

* Assume all previous iterations produce correct shortest paths

e Forall vin found, lengths| v]| = shortest path length from
to

FUNCTION Dijkstra(G, start vertex)
found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start vertex] = 0

WHILE found.length != G.vertices.length
FOR v IN found
FOR vOther, weight IN G.edges[V]
IF vOther NOT IN found
vOther_ length = lengths[v] + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths

Proof by induction that holds for all n

* P(1) holds because ...

* Let’s assume that P(k) (where k < n) holds.
holds because of P(k)and ...

* Thus, by induction, holds for all n

Inductive Step
4« (look at code)

23

Inductive Step

In the current iteration:

* We pick an edge (v,) based on

e add to found

 Set the path length of - lengths|

What do we know about 1lengths|

1?

Proof by induction that holds for all n

holds because ...

* Let’s assume that (where k < n) holds.
holds because of and ...
* Thus, by induction, holds for all n

] =1lengths[v"] + weight

Our inductive hypothesis states
that it is the minimal path length

e Optimal path to v, and we won’t find a better path to

How do we prove this? | | Loop Invariant

Inductive Step

In the current iteration:

* We pick an edge (v,) based on

e add to found

 Set the path length of - lengths|

What do we know about 1lengths|

1?

Proof by induction that holds for all n

holds because ...

* Let’s assume that (where k < n) holds.
holds because of and ...
* Thus, by induction, holds for all n

] =1lengths[v"] + weight

Our inductive hypothesis states
that it is the minimal path length

e Optimal path to v, and we won’t find a better path to

How do we prove this? | | Loop Invariant

By our inductive hypothesis, our theorem for Dijkstra’s is correct

How many different types of paths do we consider each iteration?

Correctness

some non-negative
path lengt

found V - found

wei gh’cv*,\,Min

some non-negative
path length

weight .,

Wei ghtx,vMin

some non-negative
path length

26

Dijkstra’s says that this is the best available path.

Correctness

some non-negative
path leng

found

V - found ‘

wei gh’cv*,\,Min

\
) | €
=

. |
wel ghtx,vMin

A

some non-negative
path length

weight,,

some non-negative
path length

27

Correctness
found

some hon-negative

path length

How do we know that the path from
to viVlin is better than the path
from v toy?

Both include the path from s to v*, and Dijkstra’s
Algorithm always picks the minimal path length.

28

Correctness

found V - found

some non-negative
path length

’ weight,.

How do we know that the path from
to y to vIVlin is not even better
than the path from v to viVlin?

some non-negative
path length

Dijkstra’s Algorithm only operates on graphs with non-negative edge weights.
Thus, this new path must be greater than or equal to the (v*, vMin) edge. 29

Correctness

found V - found

some hon-negative
path length

How do we know that the path from
to viVlin is better than the path
from x to viVlin?

some non-negative

Dijkstra’s Algorithm compares these two options and
picks the minimal path length.

path length

30

Correctness
V - found

weight ui,
| | | | |
some non-negative

path length

found

some hon-negative

O---
&

path length

weight,,

'How do we know that the path from
x to y to viVlin is not even better than

some non-negative | the path from v* to viViin?
path length '

Dijkstra’s Algorithm only operates on graphs with non-negative edge weights. Thus,
this new path must be greater than or equal to the (v¥*, vMin) edge:!

Not taking the shortest edge. We are taking the shortest path!

I

1
| found ' V-found

some non-negative |
path length I
I
1

, some non-negative

weight ., path length

We:i-ghtvain I

some non-negative
path length

32

Sometimes the the shortest edge is on the shortest path.

I
1
| found ' V-found
some non-negative |
path length I
I
boweight iy
— 3 :— I S S . vMin
I some non-negative
weight ., T 15 path length
. 1
We]-ghtvain

some non-negative
path length

33

Why doesn’t Dijkstra’s work on graphs with negative edges?

I
|
| found ' V-found
some non-negative |
path length I
I
I weight . ,ui,
—_— 3 :— EEE NN IS . vMin
|
weight,., 7 15 15
We:i-ghtvain I

some non-negative
path length

34

Correctness (summary)

* Given our assumption that we do not have negative edges
* And our inductive hypothesis that our path to v is the shortest
* And our analysis of Dijkstra’s greedy criterion

e We have shown that

lengths]] =1lengths[v'] +weight is the best available path length

FUNCTION Dijkstra(G, start vertex)
found = {}

lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start vertex] = 0

WHILE found.length != G.vertices.length
FOR v IN found
FOR vOther, weight IN G.edges[V]
IF vOther NOT IN found
vOther_ length = lengths[v] + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths

What is the
running time?

36

FUNCTION Dijkstra(G, start vertex)

found = {} What |S the
lengths = {v: INFINITY FOR v IN G.vertices} rljr]r]ir]gg.tirT]Eej)

found.add(start_vertex)
lengths[start vertex] = 0

How many times does the
WHILE found.length != G.vertices.length outer loop run?

FOR v IN found
FOR vOther, weight IN G.edges[V] O(n)
IF vOther NOT IN found
vOther_ length = lengths[v] + weight
IF vOther_length < min_length

min_length = vOther length How many times do the inner

two loops run?

vMin = vOther
found.add(vMin)

O(m)
lengths[vMin] = min_length

RETURN lengths

37

FUNCTION Dijkstra(G, start vertex)

found = {} What |S the
lengths = {v: INFINITY FOR v IN G.vertices} rljr]r]ir]gg.tirT]Eej)

found.add(start_vertex)
lengths[start vertex] = 0

How many times does the
WHILE found.length != G.vertices.length outer loop run?

FOR v IN found
FOR vOther, weight IN G.edges[V] O(n)
IF vOther NOT IN found
vOther_ length = lengths[v] + weight
IF vOther_length < min_length

min_length = vOther length How many times do the inner

two loops run?

vMin = vOther
found.add(vMin)

O(m)
lengths[vMin] = min_length

O(nm)

RETURN lengths

38

	Slide 1: Dijkstra’s Algorithm
	Slide 3
	Slide 4: Outline
	Slide 5: Extra Resources
	Slide 6: Dijkstra’s Algorithm
	Slide 7: Dijkstra’s Algorithm
	Slide 8: Dijkstra’s Algorithm
	Slide 9
	Slide 10: How did we do shortest path before?
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Exercise
	Slide 16: Dijkstra’s Algorithm with negative edges
	Slide 17: Dijkstra’s Algorithm with negative edges
	Slide 18: Dijkstra’s Algorithm with negative edges
	Slide 19: Dijkstra’s Algorithm
	Slide 20: Proof by Induction Cheat-sheet
	Slide 21: Correctness
	Slide 22: Correctness
	Slide 23
	Slide 24: Inductive Step
	Slide 25: Inductive Step
	Slide 26: Correctness
	Slide 27: Correctness
	Slide 28: Correctness
	Slide 29: Correctness
	Slide 30: Correctness
	Slide 31: Correctness
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Correctness (summary)
	Slide 36
	Slide 37
	Slide 38

