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Dijkstra’s Single-Source
Shortest Path Algorithm



Outline

* Discuss graphs with edge weights
e Discuss shortest paths
* Discuss Dijkstra’s algorithm including a proof

* Dijkstra’s Algorithm



Extra Resources

* Introduction to Algorithms, 3rd, chapter 24
e Algorithms llluminated Part 2: Chapter 9



Dijkstra’s
Algorithm

Find the shortest path between a
start vertex s and every other vertex
in the graph G

Can halt the algorithm if you only
want to find shortest path to a
specific vertex (for example, a
destination city)

Uses:

* Network routing
e Path planning

* Etc.
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Dijkstra’s Algorithm

Input
¢ A graph G = (V,E) and
* A source vertex

Output
 for all vin V we output the length of the shortest path from - >
* you can also output the actual path, but we’ll just worry about length for now

Assumptions
* A path exists from © to every other node (how can we check this property?)
* All edge weights are non-negative



What is the shortest path from S to all other vertices?




How did we do shortest path before?

* BFS

* How can we modify that process to work for graphs with weighted
edges?

O 0 =50 O 0o ¢

* Why would we not want to do that?
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min_length

FUNCTION Dijkstra(G, start_vertex) o _
found = {} This is now a set instead

lengths = {v: INFINITY FOR v IN G.vertices} of a dictionary

found.add(start_vertex)

lengths[start vertex] = ©
Dijkstra’s greedy criterion
WHILE found.length != G.vertices.length

FOR v IN found
FOR vOther, weight IN G.edges[V]
IF vOther NOT IN found
vOther length Clengths[v]) + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

Computed in previous
RETURN lengths iterations
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V - found
(set)

vOther_length = lengths[v] + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths
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FUNCTION Dijkstra(G, start vertex)
found = {}

lengths = {v: INFINITY FOR v IN G.vertices} i 2 X Q

found.add(start_vertex)
lengths[start vertex] = 0

Iteration 1:
WHILE found.length != G.vertices.length

FOR v IN found
FOR vOther, weight IN G.edges[V]
IF vOther NOT IN found
vOther_ length = lengths[v] + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths
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FUNCTION Dijkstra(G, start vertex)
found = {}

lengths = {v: INFINITY FOR v IN G.vertices} i 2 X Q

found.add(start_vertex)
lengths[start vertex] = 0

Iteration 2:
WHILE found.length != G.vertices.length

FOR v IN found
FOR vOther, weight IN G.edges[V]
IF vOther NOT IN found
vOther_ length = lengths[v] + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths
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Exercise



Dijkstra’s Algorithm with negative edges

* How might you deal with negative edges?
* How about adding some value to every edge?

-5

What is the shortest
path from s to t?
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* How might you deal with negative edges?
* How about adding some value to every edge?

What is the shortest
path from s to t?
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Dijkstra’s Algorithm with negative edges

* How might you deal with negative edges?

* How about adding some value to every edge? What is the shortest
path fromstot?

We would add a different amount to each path!
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Dijkstra’s Algorithm

* What have we done so far?
* We've only shown that it works for the given example.
* This is not enough to prove correctness.

* In general, examples are good for:
e Demonstration
 Contradictions

* They are not good for proving correctness.



Proof by Induction Cheat-sheet

Proof by induction that holds for all n

1.
2. Let’s assume that P(k) (where k < n) holds.
3.

4. Thus, by induction, holds for all n

P(1) holds because

holds because of P(k) and

v @ @ @ @ 6

B - - -
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Proof by induction that holds for all n

holds because ...

CO r re Ct n eSS * Let’s assume that (where k < n) holds.
holds because of and ...
* Thus, by induction, holds for all n

Theorem for Dijkstra’s algorithm:

For every graph with non-negative edge lengths, Dijkstra’s algorithm
computes all shortest path distances from to every
other vertex

Base Case:
* lengths| ]

1
Q)



Proof by induction that holds for all n
holds because ...

CO r r‘e Ct n eSS e Let’s assume that (where k < n) holds.

holds because of and ...

* Thus, by induction, holds for all n

Theorem for Dijkstra’s algorithm:

For every graph with non-negative edge lengths, Dijkstra’s algorithm
computes all shortest path distances from to every
other vertex

Inductive Hypothesis:

* Assume all previous iterations produce correct shortest paths

e Forall vin found, lengths| v ]| = shortest path length from
to



FUNCTION Dijkstra(G, start vertex)
found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start vertex] = 0

WHILE found.length != G.vertices.length
FOR v IN found
FOR vOther, weight IN G.edges[V]
IF vOther NOT IN found
vOther_ length = lengths[v] + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths

Proof by induction that holds for all n

* P(1) holds because ...

* Let’s assume that P(k) (where k < n) holds.
holds because of P(k)and ...

* Thus, by induction, holds for all n

Inductive Step
4« (look at code)

23



Inductive Step

In the current iteration:

* We pick an edge (v, ) based on

e add to found

 Set the path length of - lengths|

What do we know about 1lengths|

1?

Proof by induction that holds for all n

holds because ...

* Let’s assume that (where k < n) holds.
holds because of and ...
* Thus, by induction, holds for all n

] =1lengths[v"] + weight

Our inductive hypothesis states
that it is the minimal path length

e Optimal path to v, and we won’t find a better path to

How do we prove this? | | Loop Invariant




Inductive Step

In the current iteration:

* We pick an edge (v, ) based on

e add to found

 Set the path length of - lengths|

What do we know about 1lengths|

1?

Proof by induction that holds for all n

holds because ...

* Let’s assume that (where k < n) holds.
holds because of and ...
* Thus, by induction, holds for all n

] =1lengths[v"] + weight

Our inductive hypothesis states
that it is the minimal path length

e Optimal path to v, and we won’t find a better path to

How do we prove this? | | Loop Invariant

By our inductive hypothesis, our theorem for Dijkstra’s is correct



How many different types of paths do we consider each iteration?

Correctness

some non-negative
path lengt

found V - found

wei gh’cv*,\,Min

some non-negative
path length

weight .,

Wei ghtx,vMin

some non-negative
path length
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Dijkstra’s says that this is the best available path.

Correctness

some non-negative
path leng

found

V - found ‘

wei gh’cv*,\,Min

\
) | €
=

. |
wel ghtx,vMin

A

some non-negative
path length

weight,,

some non-negative
path length
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Correctness
found

some hon-negative

path length

How do we know that the path from
to viVlin is better than the path
from v toy?

Both include the path from s to v*, and Dijkstra’s
Algorithm always picks the minimal path length.
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Correctness

found V - found

some non-negative
path length

’ weight,.

How do we know that the path from
to y to vIVlin is not even better
than the path from v to viVlin?

some non-negative
path length

Dijkstra’s Algorithm only operates on graphs with non-negative edge weights.
Thus, this new path must be greater than or equal to the (v*, vMin) edge. 29




Correctness

found V - found

some hon-negative
path length

How do we know that the path from
to viVlin is better than the path
from x to viVlin?

some non-negative

Dijkstra’s Algorithm compares these two options and
picks the minimal path length.

path length

30



Correctness
V - found

weight  ui,
| | | | |
some non-negative

path length

found

some hon-negative

O---
&

path length

weight,,

'How do we know that the path from
x to y to viVlin is not even better than

some non-negative | the path from v* to viViin?
path length '

Dijkstra’s Algorithm only operates on graphs with non-negative edge weights. Thus,
this new path must be greater than or equal to the (v¥*, vMin) edge:!




Not taking the shortest edge. We are taking the shortest path!

I

1
| found ' V-found

some non-negative |
path length I
I
1

, some non-negative

weight ., path length

We:i-ghtvain I

some non-negative
path length
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Sometimes the the shortest edge is on the shortest path.

I
1
| found ' V-found
some non-negative |
path length I
I
boweight iy
— 3 :— I S S . vMin
I some non-negative
weight ., T 15 path length
. 1
We]-ghtvain

some non-negative
path length
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Why doesn’t Dijkstra’s work on graphs with negative edges?

I
|
| found ' V-found
some non-negative |
path length I
I
I weight . ,ui,
—_— 3 :— EEE NN IS . vMin
|
weight,., 7 15 15
We:i-ghtvain I

some non-negative
path length
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Correctness (summary)

* Given our assumption that we do not have negative edges
* And our inductive hypothesis that our path to v is the shortest
* And our analysis of Dijkstra’s greedy criterion

e We have shown that

lengths] ] =1lengths[v'] +weight is the best available path length



FUNCTION Dijkstra(G, start vertex)
found = {}

lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start vertex] = 0

WHILE found.length != G.vertices.length
FOR v IN found
FOR vOther, weight IN G.edges[V]
IF vOther NOT IN found
vOther_ length = lengths[v] + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths

What is the
running time?
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FUNCTION Dijkstra(G, start vertex)

found = {} What |S the
lengths = {v: INFINITY FOR v IN G.vertices} rljr]r]ir]gg.tirT]Eej)

found.add(start_vertex)
lengths[start vertex] = 0

How many times does the
WHILE found.length != G.vertices.length outer loop run?

FOR v IN found
FOR vOther, weight IN G.edges[V] O(n)
IF vOther NOT IN found
vOther_ length = lengths[v] + weight
IF vOther_length < min_length

min_length = vOther length How many times do the inner

two loops run?

vMin = vOther
found.add(vMin)

O(m)
lengths[vMin] = min_length

RETURN lengths
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FUNCTION Dijkstra(G, start vertex)

found = {} What |S the
lengths = {v: INFINITY FOR v IN G.vertices} rljr]r]ir]gg.tirT]Eej)

found.add(start_vertex)
lengths[start vertex] = 0

How many times does the
WHILE found.length != G.vertices.length outer loop run?

FOR v IN found
FOR vOther, weight IN G.edges[V] O(n)
IF vOther NOT IN found
vOther_ length = lengths[v] + weight
IF vOther_length < min_length

min_length = vOther length How many times do the inner

two loops run?

vMin = vOther
found.add(vMin)

O(m)
lengths[vMin] = min_length

O(nm)

RETURN lengths
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