
Kosaraju’s Algorithm for
Strongly Connected

Components
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

• Review topological orderings

• Discuss strongly connected components

• Cover Kosaraju’s Algorithm

Exercise

• Work through Kosaraju’s Algorithm

2

Extra Resources

• Introduction to Algorithms, 3rd, chapter 22

• Algorithms Illuminated Part 2: Chapter 8

3

Topological Orderings

Definition: a topological ordering of a directed acyclic graph is a
labelling f of the graph’s vertices such that:

1. The f-values are of the set {1, 2, …, n}

2. For an edge (u, v) of G, f(u) < f(v)

s

v

w

t

1

2

3

4

Or 3

Or 2

s v w t

s w v t
4

Solve with DFS

FUNCTION TopologicalOrdering(G)

found = {v: FALSE FOR v IN G.vertices}

fValues = {v: INFINITY FOR v IN G.vertices}

f = G.vertices.length

FOR v IN G.vertices

IF found[v] == FALSE

DFSTopological(G, v, found, f, fValues)

RETURN fValues

FUNCTION DFSTopological(G, v, found, f, fValues)

found[v] = TRUE

FOR vOther IN G.edges[v]

IF found[vOther] == FALSE

DFSTopological(G, vOther, found, f, fValues)

fValues[v] = f

f = f - 1

5

Strongly Connected Components

• Topological orderings are useful in their own right,
but they also let us efficiently calculate the
strongly connected components (SCCs) of a graph

• A component (set of vertices) of a graph is strongly connected if we
can find a path from any vertex to any other vertex

• This is a concept for directed graphs only

• (just connected components for undirected graphs)

Why are SCCs useful?
6

s

v

w

t

What are the strongly connected components of this graph?

7

8

What are the strongly connected components of this graph?

What are the strongly connected components of this graph?

9

What are the strongly connected components of this graph?

10

G = {

 1: [2],

 2: [3, 4],

 3: [1, 8, 9],

 4: [5, 6],

 5: [6],

 6: [7],

 7: [5],

 8: [5, 10, 11]

 9: [8],

 10: [11],

 11: [9]

}

What are the strongly connected components of this graph?

1 2

3

4

5 6

7

9
1
0

1
1

8

11

G = {

 1: [2],

 2: [3, 4],

 3: [1, 8, 9],

 4: [5, 6],

 5: [6],

 6: [7],

 7: [5],

 8: [5, 10, 11]

 9: [8],

 10: [11],

 11: [9]

}

Can we use DFS?

What does a DFS do?

• Finds everything that is findable

• Does not visit any vertex more than once

So, what can we find from each of the different nodes?

12

What if we start DFS here?

What if we start DFS here?

What if we start DFS here?

13

Meta Graph

Meta graph sink

14

Meta Graph

Meta graph sink

15

Meta Graph

Meta graph sink

16

Kosaraju

Computes the SCCs in O(m + n) time (linear!)

1. Create a reverse version of the G called G_reversed

17

1 7

4

9 6

3

8 5

2

1 7

4

9 6

3

8 5

2

G

G_reversed

18

Kosaraju

Computes the SCCs in O(m + n) time (linear!)

1. Create a reverse version of the G called G_reversed

2. Run KosarajuLabels on G_reversed

3. Create a relabeled version of the G called G_relabeled

4. Run KosarajuLeaders on G_relabeled

Compute a topological order of the meta graph

Explore vertices in the new order

19

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels = KosarajuLabels(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
leaders = KosarajuLeaders(G_relabeled)

RETURN leaders

20

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels = KosarajuLabels(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
leaders = KosarajuLeaders(G_relabeled)

RETURN leaders

21

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels = KosarajuLabels(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
leaders = KosarajuLeaders(G_relabeled)

RETURN leaders

FUNCTION KosarajuLabels(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices
IF found[v] == FALSE

DFSLabels(G, v, found, label, labels)

RETURN labels

FUNCTION DFSLabels(G, v, found, label, labels)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLabels(G, vOther, found, label, labels)

label = label + 1
labels[v] = label

22

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels = KosarajuLabels(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
leaders = KosarajuLeaders(G_relabeled)

RETURN leaders

FUNCTION KosarajuLeaders(G)
found = {v: FALSE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
DFSLeaders(G, v, found, leader, leaders)

RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLeaders(G, vOther, found, leader, leaders)

23

These are typically implemented in a single function

FUNCTION KosarajuLabels(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices
IF found[v] == FALSE

DFSLabels(G, v, found, label, labels)

RETURN labels

FUNCTION DFSLabels(G, v, found, label, labels)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLabels(G, vOther, found, label, labels)

label = label + 1
labels[v] = label

FUNCTION KosarajuLeaders(G)
found = {v: FALSE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
DFSLeaders(G, v, found, leader, leaders)

RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLeaders(G, vOther, found, leader, leaders)

24

These are typically implemented in a single function

FUNCTION KosarajuLabels(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices
IF found[v] == FALSE

DFSLabels(G, v, found, label, labels)

RETURN labels

FUNCTION DFSLabels(G, v, found, label, labels)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLabels(G, vOther, found, label, labels)

label = label + 1
labels[v] = label

FUNCTION KosarajuLeaders(G)
found = {v: FALSE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
DFSLeaders(G, v, found, leader, leaders)

RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLeaders(G, vOther, found, leader, leaders)

25

These are typically implemented in a single function

FUNCTION KosarajuLabels(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices
IF found[v] == FALSE

DFSLabels(G, v, found, label, labels)

RETURN labels

FUNCTION DFSLabels(G, v, found, label, labels)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLabels(G, vOther, found, label, labels)

label = label + 1
labels[v] = label

FUNCTION KosarajuLeaders(G)
found = {v: FALSE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
DFSLeaders(G, v, found, leader, leaders)

RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLeaders(G, vOther, found, leader, leaders)

26

FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
KosarajuDFS(G, v, found, label, labels, leader, leaders)

RETURN labels, leaders

FUNCTION KosarajuDFS(G, v, found, label, labels, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(G, v, found, label, labels, leader, leaders)

label = label + 1
labels[v] = label

27

Does both labels and leaders.

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels = KosarajuLabels(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
leaders = KosarajuLeaders(G_relabeled)

RETURN leaders

28

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders

29

Kosaraju

Computes the SCCs in O(m + n) time (linear!)

1. Create a reverse version of the G called G_reversed

2. Run KosarajuLoop on G_reversed

3. Create a relabeled version of the G called G_relabeled

4. Run KosarajuLoop on G_relabeled

Compute a topological order of the meta graph

Explore vertices in the new order

30

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders

1 7

4

9 6

3

8 5

2

Where do we want to start DFS if
we are looking for SCCs? (Which
SCC is best to find first?)G

31

What are
the SCCs?

9

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders

1 7

4

9 6

3

8 5

2

G_reversed

32

Where do we want to start DFS if
we are looking for SCCs? (Which
SCC is best to find first?)

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders

1 7

4

9 6

3

8 5

2

G_reversed

33

Where do we want to start DFS if
we are looking for SCCs? (Which
SCC is best to find first?)

1 7

4

9 6

3

8 5

2

FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
KosarajuDFS(…)

RETURN labels, leaders

FUNCTION KosarajuDFS(…)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(…)

label = label + 1
labels[v] = label

Ignore leaders the first pass
Ignore labels the second pass 35

Can we start anywhere?

1 7

4

9 6

3

8 5

2

1 7

4

9 6

3

8 5

2

G

G_reversed

7 9

8

6 5

1

4 3

2

G_relabeled

Sink SCC in
Meta Graph

36

Multiple possibilities

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders

7 9

8

6 5

1

4 3

2

G_relabeled

37

FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
KosarajuDFS(…)

RETURN labels, leaders

FUNCTION KosarajuDFS(…)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(…)

label = label + 1
labels[v] = label

7 9

8

6 5

1

4 3

2

Ignore leaders the first pass
Ignore labels the second pass 39

1 7

4

9 6

3

8 5

2

1 7

4

9 6

3

8 5

2

G

G_reversed

7 9

8

6 5

1

4 3

2

G_relabeled

Sink SCC in
Meta Graph

99

9

6

6

6 4 4

4
40

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders

7 9

8

6 5

1

4 3

2

9

9
9

6

6

6 4 4

4

G_relabeled

41

What could you do to make this API a bit nicer?

FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
KosarajuDFS(G, v, found, label, labels, leader, leaders)

RETURN labels, leaders

FUNCTION KosarajuDFS(G, v, found, label, labels, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(G, v, found, label, labels, leader, leaders)

label = label + 1
labels[v] = label

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders

Exercise

42

Why does this work?

• Does this work for all graphs, or just this example?

• The SCCs of G create an acyclic “meta-graph”

• For the “meta-graph”
• Vertices correspond to the SCCs

• Edges correspond to paths among the SCCs

43

SCC1 SCC2

SCC1 SCC2

44

45

1 7

4

9 6

3

8 5

2

46

How do we know that the SCC based meta-
graph is acyclic?

1 7

4

9 6

3

8 5

2

47

Key Lemma

• Consider the two adjacent SCCs in the meta-graph above

• Now consider the re-labeling found from the reverse graph

• Let f(v) = the re-labeling resulting from
KosarajuLoop(G_reversed)

• Then max[f(.) in SCC1] < max[f(.) in SCC2]

• Corollary: the maximum label must lie in a “sink SCC” of
the original graph

SCC1 SCC2

j
i

SCC1 SCC2

j
i

Reverse Graph (Random Labels)

FUNCTION KosarajuDFS(…)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(…)

label = label + 1
labels[v] = label

48

Where do we want to start DFS in the leaders pass?

Original Graph (Random Labels)

Where should we start
labeling leaders in the
second pass?

49

Where should we start
labeling leaders in the
second pass?

50

Max label of SCC1 = F1

Max label of SCC2 = F2

Max label of SCC3 = F3

Max label of SCC4 = F4

Then F1 < {F2, F3} < F4

51

Max label of SCC2 = F2

Max label of SCC3 = F3

Max label of SCC4 = F4

Then F1 < {F2, F3} < F4

What would happen if SCC4 had a link back to SCC3?

Max label of SCC1 = F1

52

Proof of
Lemma

Case 1: consider the case when the first vertex
that we explore is in SCC1

• Then all SCC1 is explored before SCC2

• Therefore, all labels in SCC1 are less than all labels in
SCC2

• So, in the original graph we will start in SCC2 (the sink)

SCC1 SCC2

j
i

Reverse Graph

SCC1 SCC2

j
i

Original Graph

FUNCTION KosarajuDFS(…)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(…)

label = label + 1
labels[v] = label

53

Case 1 Case 2

Proof of
Lemma

Case 2: consider the case when the first vertex that we explore is in SCC2

• All other vertices in SSC2 are explored before vertex j

• All vertices in SSC1 are explored before vertex j

• Therefore, all labels in SSC1 and SSC2 are less than the label of vertex j

• So, in the original graph we will start at vertex j in SSC2 (the sink)

SCC1 SCC2

j
i

SCC1 SCC2

j
i

Original Graph

FUNCTION KosarajuDFS(…)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(…)

label = label + 1
labels[v] = label

54

Case 1 Case 2
Reverse Graph

What does this mean?

• We’ll start the second KosarajuLoop at an “SCC sink”

• That sink will then be removed (by marking all vertices in the SCC as
explored) and we’ll next move to the newly created sink

• And so on

55

Kosaraju’s Algorithm Summary

Computes the SCCs in O(m + n) time (linear!)

1. Create a reverse version of the G called G_reversed

2. Run KosarajuLoop on G_reversed
• Create a topological ordering on the meta graph

3. Create a relabeled version of the G called G_relabeled

4. Run KosarajuLoop on G_relabeled
• Find all nodes with the same “leader”

56

	Slide 1: Kosaraju’s Algorithm for Strongly Connected Components
	Slide 2: Outline
	Slide 3: Extra Resources
	Slide 4: Topological Orderings
	Slide 5: Solve with DFS
	Slide 6: Strongly Connected Components
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Can we use DFS?
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Kosaraju
	Slide 18
	Slide 19: Kosaraju
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Kosaraju
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Why does this work?
	Slide 44
	Slide 45
	Slide 46
	Slide 47: How do we know that the SCC based meta-graph is acyclic?
	Slide 48: Key Lemma
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Proof of Lemma
	Slide 54: Proof of Lemma
	Slide 55: What does this mean?
	Slide 56: Kosaraju’s Algorithm Summary

