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Outline

Topics and Learning Objectives

• Review topological orderings

• Discuss strongly connected components

• Cover Kosaraju’s Algorithm

Exercise

• Work through Kosaraju’s Algorithm
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Extra Resources

• Introduction to Algorithms, 3rd, chapter 22

• Algorithms Illuminated Part 2: Chapter 8
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Topological Orderings

Definition: a topological ordering of a directed acyclic graph is a 
labelling f of the graph’s vertices such that:

1. The f-values are of the set {1, 2, …, n}

2. For an edge (u, v) of G, f(u) < f(v)
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Solve with DFS

FUNCTION TopologicalOrdering(G)

found = {v: FALSE FOR v IN G.vertices}

fValues = {v: INFINITY FOR v IN G.vertices}

f = G.vertices.length

FOR v IN G.vertices

IF found[v] == FALSE

DFSTopological(G, v, found, f, fValues)

RETURN fValues

FUNCTION DFSTopological(G, v, found, f, fValues)

found[v] = TRUE

FOR vOther IN G.edges[v]

IF found[vOther] == FALSE

DFSTopological(G, vOther, found, f, fValues)

fValues[v] = f

f = f - 1
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Strongly Connected Components

• Topological orderings are useful in their own right, 
but they also let us efficiently calculate the
strongly connected components (SCCs) of a graph

• A component (set of vertices) of a graph is strongly connected if we 
can find a path from any vertex to any other vertex

• This is a concept for directed graphs only 

• (just connected components for undirected graphs)

Why are SCCs useful?
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What are the strongly connected components of this graph?



What are the strongly connected components of this graph?
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What are the strongly connected components of this graph?
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G = {

  1: [2],

  2: [3, 4],

  3: [1, 8, 9],

  4: [5, 6],

  5: [6],

  6: [7],

  7: [5],

  8: [5, 10, 11]

  9: [8],

 10: [11],

 11: [9]

}



What are the strongly connected components of this graph?
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G = {

  1: [2],

  2: [3, 4],

  3: [1, 8, 9],

  4: [5, 6],

  5: [6],

  6: [7],

  7: [5],

  8: [5, 10, 11]

  9: [8],

 10: [11],

 11: [9]

}



Can we use DFS?

What does a DFS do?

• Finds everything that is findable

• Does not visit any vertex more than once

So, what can we find from each of the different nodes?
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What if we start DFS here?

What if we start DFS here?

What if we start DFS here?
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Meta Graph

Meta graph sink
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Meta Graph

Meta graph sink
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Meta Graph

Meta graph sink
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Kosaraju

Computes the SCCs in O(m + n) time (linear!)

1. Create a reverse version of the G called G_reversed
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Kosaraju

Computes the SCCs in O(m + n) time (linear!)

1. Create a reverse version of the G called G_reversed

2. Run KosarajuLabels on G_reversed

3. Create a relabeled version of the G called G_relabeled

4. Run KosarajuLeaders on G_relabeled

Compute a topological order of the meta graph

Explore vertices in the new order
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FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels = KosarajuLabels(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
leaders = KosarajuLeaders(G_relabeled)

RETURN leaders
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FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels = KosarajuLabels(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
leaders = KosarajuLeaders(G_relabeled)

RETURN leaders
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FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels = KosarajuLabels(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
leaders = KosarajuLeaders(G_relabeled)

RETURN leaders

FUNCTION KosarajuLabels(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices
IF found[v] == FALSE

DFSLabels(G, v, found, label, labels)

RETURN labels

FUNCTION DFSLabels(G, v, found, label, labels)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLabels(G, vOther, found, label, labels)

label = label + 1
labels[v] = label
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FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels = KosarajuLabels(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
leaders = KosarajuLeaders(G_relabeled)

RETURN leaders

FUNCTION KosarajuLeaders(G)
found = {v: FALSE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
DFSLeaders(G, v, found, leader, leaders)

RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLeaders(G, vOther, found, leader, leaders)

23



These are typically implemented in a single function

FUNCTION KosarajuLabels(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices
IF found[v] == FALSE

DFSLabels(G, v, found, label, labels)

RETURN labels

FUNCTION DFSLabels(G, v, found, label, labels)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLabels(G, vOther, found, label, labels)

label = label + 1
labels[v] = label

FUNCTION KosarajuLeaders(G)
found = {v: FALSE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
DFSLeaders(G, v, found, leader, leaders)

RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLeaders(G, vOther, found, leader, leaders)
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These are typically implemented in a single function

FUNCTION KosarajuLabels(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices
IF found[v] == FALSE

DFSLabels(G, v, found, label, labels)

RETURN labels

FUNCTION DFSLabels(G, v, found, label, labels)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLabels(G, vOther, found, label, labels)

label = label + 1
labels[v] = label

FUNCTION KosarajuLeaders(G)
found = {v: FALSE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
DFSLeaders(G, v, found, leader, leaders)

RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLeaders(G, vOther, found, leader, leaders)
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These are typically implemented in a single function

FUNCTION KosarajuLabels(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices
IF found[v] == FALSE

DFSLabels(G, v, found, label, labels)

RETURN labels

FUNCTION DFSLabels(G, v, found, label, labels)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLabels(G, vOther, found, label, labels)

label = label + 1
labels[v] = label

FUNCTION KosarajuLeaders(G)
found = {v: FALSE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
DFSLeaders(G, v, found, leader, leaders)

RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSLeaders(G, vOther, found, leader, leaders)
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FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
KosarajuDFS(G, v, found, label, labels, leader, leaders)

RETURN labels, leaders

FUNCTION KosarajuDFS(G, v, found, label, labels, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(G, v, found, label, labels, leader, leaders)

label = label + 1
labels[v] = label

27

Does both labels and leaders.



FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels = KosarajuLabels(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
leaders = KosarajuLeaders(G_relabeled)

RETURN leaders
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FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders
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Kosaraju

Computes the SCCs in O(m + n) time (linear!)

1. Create a reverse version of the G called G_reversed

2. Run KosarajuLoop on G_reversed

3. Create a relabeled version of the G called G_relabeled

4. Run KosarajuLoop on G_relabeled

Compute a topological order of the meta graph

Explore vertices in the new order
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FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders
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Where do we want to start DFS if 
we are looking for SCCs? (Which 
SCC is best to find first?)G

31

What are 
the SCCs?
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FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders
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Where do we want to start DFS if 
we are looking for SCCs? (Which 
SCC is best to find first?)



FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders
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Where do we want to start DFS if 
we are looking for SCCs? (Which 
SCC is best to find first?)
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FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
KosarajuDFS(…)

RETURN labels, leaders

FUNCTION KosarajuDFS(…)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(…)

label = label + 1
labels[v] = label

Ignore leaders the first pass
Ignore labels the second pass 35

Can we start anywhere?
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FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders
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FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
KosarajuDFS(…)

RETURN labels, leaders

FUNCTION KosarajuDFS(…)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(…)

label = label + 1
labels[v] = label
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Ignore leaders the first pass
Ignore labels the second pass 39
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FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders
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What could you do to make this API a bit nicer?



FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE

leader = v
KosarajuDFS(G, v, found, label, labels, leader, leaders)

RETURN labels, leaders

FUNCTION KosarajuDFS(G, v, found, label, labels, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(G, v, found, label, labels, leader, leaders)

label = label + 1
labels[v] = label

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, _ = KosarajuLoop(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders

Exercise
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Why does this work?

• Does this work for all graphs, or just this example?

• The SCCs of G create an acyclic “meta-graph”

• For the “meta-graph”
• Vertices correspond to the SCCs

• Edges correspond to paths among the SCCs
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SCC1 SCC2

SCC1 SCC2
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How do we know that the SCC based meta-
graph is acyclic?
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Key Lemma

• Consider the two adjacent SCCs in the meta-graph above

• Now consider the re-labeling found from the reverse graph

• Let f(v) = the re-labeling resulting from 
KosarajuLoop(G_reversed)

• Then max[f(.) in SCC1] < max[f(.) in SCC2]

• Corollary: the maximum label must lie in a “sink SCC” of 
the original graph

SCC1 SCC2

j
i

SCC1 SCC2

j
i

Reverse Graph (Random Labels)

FUNCTION KosarajuDFS(…)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(…)

label = label + 1
labels[v] = label

48

Where do we want to start DFS in the leaders pass?

Original Graph (Random Labels)



Where should we start 
labeling leaders in the 
second pass?
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Where should we start 
labeling leaders in the 
second pass?
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Max label of SCC1 = F1

Max label of SCC2 = F2

Max label of SCC3 = F3

Max label of SCC4 = F4

Then F1 < {F2, F3} < F4
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Max label of SCC2 = F2

Max label of SCC3 = F3

Max label of SCC4 = F4

Then F1 < {F2, F3} < F4

What would happen if SCC4 had a link back to SCC3?

Max label of SCC1 = F1
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Proof of 
Lemma

Case 1: consider the case when the first vertex 
that we explore is in SCC1

• Then all SCC1 is explored before SCC2

• Therefore, all labels in SCC1 are less than all labels in 
SCC2

• So, in the original graph we will start in SCC2 (the sink)

SCC1 SCC2

j
i

Reverse Graph

SCC1 SCC2

j
i

Original Graph

FUNCTION KosarajuDFS(…)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(…)

label = label + 1
labels[v] = label
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Case 1 Case 2



Proof of 
Lemma

Case 2: consider the case when the first vertex that we explore is in SCC2

• All other vertices in SSC2 are explored before vertex j

• All vertices in SSC1 are explored before vertex j

• Therefore, all labels in SSC1 and SSC2 are less than the label of vertex j

• So, in the original graph we will start at vertex j in SSC2 (the sink)

SCC1 SCC2

j
i

SCC1 SCC2

j
i

Original Graph

FUNCTION KosarajuDFS(…)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
KosarajuDFS(…)

label = label + 1
labels[v] = label
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Case 1 Case 2
Reverse Graph



What does this mean?

• We’ll start the second KosarajuLoop at an “SCC sink”

• That sink will then be removed (by marking all vertices in the SCC as 
explored) and we’ll next move to the newly created sink

• And so on
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Kosaraju’s Algorithm Summary

Computes the SCCs in O(m + n) time (linear!)

1. Create a reverse version of the G called G_reversed

2. Run KosarajuLoop on G_reversed
• Create a topological ordering on the meta graph

3. Create a relabeled version of the G called G_relabeled

4. Run KosarajuLoop on G_relabeled
• Find all nodes with the same “leader”
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