Depth First Search and Topological Orderings

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Discuss depth first search for graphs
- Discuss topological orderings

Exercise

• DFS run through

Depth-First Search

- Explore more aggressively, and
- Backtrack when needed
- Linear time algorithm (again O(m + n))

• Computes topological ordering (we'll discuss this today)

```
FUNCTION DFS(G, start_vertex)
  found = {v: FALSE FOR v IN G.vertices}
  DFSRecursion(G, start_vertex, found)
  RETURN found
```

```
FUNCTION DFSRecursion(G, v, found)
  found[v] = TRUE
  FOR vOther IN G.edges[v]
    IF found[vOther] == FALSE
        DFSRecursion(G, vOther, found)
```

Why is this nonrecursive function necessary?

```
FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
DFSRecursion(G, start vertex, found)
```

Why is this nonrecursive function necessary?

```
FUNCTION DFSRecursion(G, v, found
found[v] = TRUE
FOR vOther IN G.edges[v]
    IF found[vOther] == FALSE
        DFSRecursion(G, vOther,
```

RETURN found

```
FUNCTION BFS(G, start_vertex)
   found = {v: FALSE FOR v IN G.vertices}
   found[start_vertex] = TRUE
   visit_queue = [start_vertex]
  WHILE visit queue.length != 0
      vFound = visit queue.pop()
      FOR vOther IN G.edges[vFound]
         IF found[vOther] == FALSE
            found[vOther] = TRUE
            visit_queue.add(v0ther)
   RETURN found
```

```
FUNCTION DFSIterative(G, v)
  found = {v: FALSE FOR v IN G.vertices}
   found[start vertex] = TRUE
  visit stack = [start vertex]
  WHILE visit stack.length != 0
      vFound = visit_stack.pop()
      FOR vOther IN G.edges[vFound]
         IF found[vOther] == FALSE
            found[vOther] = TRUE
            visit stack.push(vOther)
```

Why is this nonrecursive function necessary?

RETURN found

What kind of data structure would we need for an iterative version?

```
FUNCTION DFSRecursion(G, v, found)
  found[v] = TRUE
  FOR vOther IN G.edges[v]
    IF found[vOther] == FALSE
        DFSRecursion(G, vOther, found)
```

```
FUNCTION DFS(G, start_vertex)
  found = {v: FALSE FOR v in G.vertices}
  DFSRecursion(G, start_vertex, found)
  RETURN found
```


Given a tie, visit edges are in alphabetical order

Exercise

```
FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE

FOR vOther IN G.edges[v]

IF found[vOther] == FALSE

DFSRecursion(G, vOther, found)
```


Given a tie, visit edges are in alphabetical order

What is the running time?

Running Time

```
What are the lower and upper bounds on m?
FUNCTION DFS(G, start vertex)
   found = {v: FALSE FOR v IN G.vertices}
   DFSRecursion(G, start vertex, found)
   RETURN found
                                          What is the depth of the recursion tree?
FUNCTION DFSRecursion(G, v, found)
   found[v] = TRUE
   FOR vOther IN G.edges[v]
      IF found[vOther] == FALSE
          DFSRecursion(G, vOther, found)
```

An example use case for DFS

Definition: a topological ordering of a directed acyclic graph (DAG) is a labelling of the graph's vertices with "f-values" such that:

- 1. The f-values are of the set {1, 2, ..., n}
- 2. For an edge (u, v) of G, f(u) < f(v)

- 1. The f-values are of the set {1, 2, ..., n}
- 2. For an edge (u, v) of G, f(u) < f(v)

Can be used to graph a sequence of tasks while respecting all precedence constraints

- For example, a flow chart for your CS degrees
- I read a funding proposal where they were using topological orderings to schedule robot tasks for building a space station.

Requires the graph to be acyclic.

• Why?

- 1. The f-values are of the set {1, 2, ..., n}
- 2. For an edge (u, v) of G, f(u) < f(v)

How to Compute Topological Orderings?

Straightforward solution:

1. Let v be any sink of G

A sink is a vertex without any outgoing edges

- 2. Set f(v) = |V|
- 3. Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set $f(\mathbf{v}) = |V|$
- Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set f(v) = |V|
 - . Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set f(v) = |V|
- Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set $f(\mathbf{v}) = |V|$
- Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set $f(\mathbf{v}) = |V|$
 - . Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set $f(\mathbf{v}) = |V|$
 - Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set f(v) = |V|
 - Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set $f(\mathbf{v}) = |V|$
- Recursively conduct the same procedure on $G \{v\}$

How to Compute Topological Orderings?

Straightforward solution:

- 1. Let v be any sink of G
- 2. Set f(v) = |V|
- 3. Recursively conduct the same procedure on $G \{v\}$

How can we do this with our DFS algorithm if we don't know which vertices are sinks?


```
FUNCTION DFS(G, start vertex)
   found = {v: FALSE FOR v IN G.vertices}
  DFSRecursion(G, start vertex, found)
   RETURN found
FUNCTION DFSRecursion(G, v, found)
   found[v] = TRUE
   FOR vOther IN G.edges[v]
      IF found[vOther] == FALSE
         DFSRecursion(G, vOther, found)
```

```
FUNCTION DFS(G, start_vertex)
   found = {v: FALSE FOR v IN G.vertices}
   fValues = {v: INFINITY FOR v IN G.vertices}
   f = G.vertices.length
   FOR v IN G. vertices
      IF found[v] == FALSE
         DFSRecursion(G, start_vertex, found)
   RETURN found
FUNCTION DFSRecursion(G, v, found)
   found[v] = TRUE
   FOR vOther IN G.edges[v]
      IF found[vOther] == FALSE
         DFSRecursion(G, vOther, found)
   fValues[v] = f
   f = f - 1
```

Topological Ordering with DFS

```
FUNCTION TopologicalOrdering(G)

found = {v: FALSE FOR v IN G.vertices}

fValues = {v: INFINITY FOR v IN G.vertices}

f = G.vertices.length

FOR v IN G.vertices

IF found[v] == FALSE

DFSTopological(G, v, found, f, fValues)
```

```
FUNCTION DFSTopological(G, v, found, f, fValues)

found[v] = TRUE

FOR vOther IN G.edges[v]

IF found[vOther] == FALSE

DFSTopological(G, vOther, found, f, fValues)

fValues[v] = f

f = f - 1
```

```
FUNCTION TopologicalOrdering(G)
  found = {v: FALSE FOR v IN G.vertices}
  fValues = {v: INFINITY FOR v IN G.vertices}
  f = G.vertices.length
   FOR v IN G. vertices
      IF found[v] == FALSE
        DFSTopological(G, v, found, f, fValues)
  RETURN fValues
FUNCTION DFSTopological(G, v, found, f, fValues)
  found[v] = TRUE
  FOR vOther IN G.edges[v]
      IF found[vOther] == FALSE
        DFSTopological(G, vOther, found, f, fValues)
  fValues[v] = f
  f = f - 1
```

Running Time

Again, this algorithm is O(n + m)

We only consider each vertex once, and

We only consider each edge once (twice if you consider backtracking)

Correctness of DFS Topological Ordering

We need to show that for any (u, v) that f(u) < f(v)

- 1. Consider the case when u is visited first
 - We recursively look at all paths from u and label those vertices first
 - 2. So, f(u) must be less than f(v)
- 2. Now consider the case when v is visited first
 - 1. There is **no path back** to **u**, so **v** gets labeled before we explore **u**
 - 2. Thus, f(u) must be less than f(v)

How do we know that there is no path from v to u?

 We can use DFS to find a topological ordering since a DFS will search as far as it can until it needs to backtrack

It only needs to backtrack when it finds a sink

Sinks are the first values that must be labeled