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Outline

* Discuss breadth first search for graphs

e Continued from previous lecture slides
* Compute distance with Breadth-first search



Extra Resources

* Introduction to Algorithms, 3", Chapter 22
e Algorithms llluminated Part 2: Chapter 8



General Algorithm

FUNCTION Connectivity(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start vertex] = TRUE
LOOP

Find an edge where one vertex
has been found and the other
vertex has not been found.

(vFound, vNotFound) =
IF vFound == NONE || vNotFoun
BREAK
ELSE
found[vNotFound] = TRUE
RETURN found

° /
get valid edge(G.edges, found)




How do we choose the next edge?
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Two common (and well studied) options

@dth-ﬁw

* Explore the graph in
* “Cautious” exploration
e Use a FIFO data structure (can you think of an example?)

Depth-First Search

* Explore recursively

* A more “aggressive” exploration (we backtrack if necessary)
e Use a LIFO data structure (or recursion)



FUNCTION BFS(G, start vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start vertex] = TRUE

visit_queue = [star‘t_ver‘tex] FUNCTION Connectivity(G, start_vertex)

found = {v: FALSE FOR v IN G.vertices}
found[start _vertex] = TRUE

WHILE visit queue.length != 0

LOOP
vFound = visit queue.pop() / (VFound, vNotFound) =
- get valid edge(G.edges, found)
FOR VOtheP IN@edges [VFound\D IF vFound == NONE || vNotFound == NONE
IF found[vOther] == FALSE SREAk
found[vOther] = TRUEX ELSE

found[vNotFound] = TRUE
RETURN found

visit_queue.add(vOtheryg

RETURN found



Exercise questions 2 and 3

FUNCTION BFS(G, start vertex)
found = {v: FALSE FOR v IN G.vertices}
found[ start_vertex] = TRUE
visit_queue = [start ngfex

)

WHILE visit queue. length I=

—> vFound = v151t_queue.pop()

FOR vOther IN G.edges|[vFound]

IF found[vOther] == FALSE
found[vOther] = TRUE

visit queue.add(vOther

RETURN found

Given a tie, visit edges are in alphab/e\tical order
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Running Time

FUNCTION BFS(G, start vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start vertex] = TRUE
visit queue = [start vertex]

WHILE visit queue.length != © \{
vFound = visit_queue.pop() ﬁjng

What is the running time?

: v

How many times to we consider each edge?

) e

FOR vOther IN G.edges[vFound] A
IF found[vOther] == FALSE
found|[vOther] = TRUE

visit queue.add(vOther) QCW\ / (M

RETURN found
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Running Time What is the running time?

FUNCTION BFS(G, start vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start vertex] = TRUE
visit queue = [start vertex]

WHILE visit queue.length != 0 How many times to we consider each edge?

vFound = visit queue.pop()
FOR vOther IN G.edges[VvFound]
IF found[vOther] == FALSE TBFS(n’ m) — O(Tls + ms)
found[vOther] = TRUE SN——
visit queue.add(vOther)

where n, and m, are the nodes and
RETURN found edges findable/connected from/to
the start vertex
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Proof: BFS

Claim: BFS finds all nodes connected to the start node.

At the end of the BFS algorithm, v is marked found if there exists a path
fromstov

* Note: this is just a special case of the general algorithm that we

proved by contradiction
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Question

The Shortest Path Problem

* How can we determine the fewest number of hops between the start
vertex and all other connected vertices?

(A

O,
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BFS Exercise Question 1

How can we determine the fewest number
of hops between the start vertex and all

i ?
other connected vertices: FUNCTION BFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found|[start_vertex] = TRUE

visit queue = [start vertex]

WHILE visit _queue.length != 0
vFound = visit queue.pop()
FOR vOther IN G.edges|[vFound]

IF found[vOther] == FALSE
found[vOther] = TRUE

visit queue.add(vOther)

{/;;::RN Found)

Given a tie, visit edges are in alphabetical order



The Shortest Path Problem

Determine the fewest number of hops between the start vertex and all
other vertices

Same algorithm as before with the following additions:

* |nitialize the distances|s] as 0

* Initialize all other distances t

* When considering an edge (v, w) ’]\ ¥
 If wis not found, then set dist(w) to dist(v) + 1



The Shortest Path Problem

\._:L FUNCTION DistanceBFS(G, start vertex)
' 3(#__, \ found = {v: FALSE FOR v IN G.vertices}
eaasmn L ‘ Ak
- WHILE visit queue.length != 0
— (j vFound = visit queue.pop()
7 FOR vOther IN G.edges|[vFound]
-

found[start_vertex] = TRUE
\=9
distances = {v: INFINITY FOR v IN G.vertices}

distances[start vertex] = 0
2
visit queue = [start vertex]

\ X IF found[vOther] == FALSE
found[vOther] = TRUE
visit queue.add(vOther)
After we terminate, distanceq[v] = "the layer that\v is in” __— distances[vOther] = distances[vFound] + 1

RETURN distances

Given a tie, visit edges are in alphabetical order
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Connected Components

Let’s only consider undirected graphs for now

Let G = (V,E) be an undirected graph 0_6

Goal: compute all connected components in O(m + n)
* A component is any group of vertices that can reach one another
* For example, if we are trying to see if a network has become disconnected

Exercise question 2:
How would you do this using our BFS procedure from before?
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BFS Exercise Question 2
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FUNCTION FindComponents (G)

components = []

found = {v: FALSE FOR v IN G.vertices}
--“% FOR_v IN G wvertices
IF NOT found|[v

newly found = BFS(G, v)

new component = {
w FOR w, w is found IN(E%EEgzgggﬁa
IF w 1s found

}

component.append (new component)

FOR w IN new component:

found[w] TRUE
RETURN components e
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