Quicksort Correctness Proof

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Learn how quicksort works
- Learn how to partition an array

Exercise

Quicksort loop invariant

Extra Resources

- https://me.dt.in.th/page/Quicksort/
- https://www.youtube.com/watch?v=ywWBy6J5gz8
- CLRS Chapter 7
- Algorithms Illuminated Chapter 5

What do we need to do?

Input: an array of n items in arbitrary order

Output: the same number in non-decreasing order

Assumptions: the items must be orderable (from an ordinal set)

Theorem: the Quicksort algorithm arranges all items in non-decreasing order.

- 1. Lemma involving Partition
- 2. Lemma involving QuickSort

Partition proof of correctness

Value	67	44	 21	-87	•••	5	101	-31	 4
Index	0	1	 left	left + 1	•••	right - 1	right	right + 1	 n - 1

FUNCTION Partition(array, left_index, right_index)
pivot_value = array[left_index]
i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

IF array[j] < pivot_value

swap(array, i, j)
i = i + 1

swap(array, left_index, i - 1)</pre>

Partition proof of correctness

Value	67	44	 21	-87		5	101	-31		4		
Index	0	1	 left	left + 1	•••	right - 1	right	right + 1		n - 1		
			/									

FUNCTION Partition(array, left_index, right_index)

```
pivot_value = array[left_index]
i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

IF array[j] < pivot_value
    swap(array, i, j)
    i = i + 1

swap(array, left_index, i - 1)

RETURN i - 1</pre>
```

How do we prove that Partition is correct?

Loop Invariant Proofs

- 1. State the loop invariant
 - 1. A statement that can be easily proven true or false
 - 2. The statement should reference the purpose of the loop
 - 3. The statement should reference variables that change each iteration

Initialization

2. Show that the loop invariant is true before the loop starts

Maintenance

- 3. Show that the loop invariant holds when executing any iteration
- 4. Show that the loop invariant holds once the loop ends | Termination

Partition proof of correcti

Value	67	44		21	-87	
Index	0	1	•••	left	left + 1	
				/		

FUNCTION Partition(array, left_index, right_index)

```
pivot_value = array[left_index]

i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

IF array[j] < pivot_value
    swap(array, i, j)

    i = i + 1

swap(array, left_index, i - 1)</pre>
```

RETURN i - 1

Exercise

- 1. State the loop invariant
 - 1. A statement that can be easily proven true or false
 - 2. The statement should reference the purpose of the loop
 - 3. The statement should reference variables that change each iteration

Initialization

2. Show that the loop invariant is true before the loop starts

Maintenance

- 3. Show that the loop invariant holds when executing any iteration
- 4. Show that the loop invariant holds once the loop ends Termination

Partition proof of correctness

Value	67	44	•••	21	-87	•••	5	101	-31	•••	4
Index	0	1		left	left + 1	•••	right - 1	right	right + 1	•••	n - 1

FUNCTION Partition(array, left_index, right_index)

```
pivot_value = array[left_index]
i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

IF array[j] < pivot_value
    swap(array, i, j)
    i = i + 1

swap(array, left_index, i - 1)

RETURN i - 1</pre>
```

How do we prove that Partition is correct?

Loop Invariant: At the start of the iteration with indices i and j:

- 1. All items in array[1+1 ..= i-1] are < pivot value
- 2. All items in array[i ..= j-1] are ≥ pivot value

Loop Invariant: At the start of the iteration with indices i and j:

- All items in a[I+1 ..= i-1] are < pivot
- All items in a[i ..= j-1] are ≥ pivot

FUNCTION Partition(a, l, r)

```
pivot_value = a[l]
i = 1 + 1
FOR j IN [l + 1 ..< r]
  IF a[j] < pivot_value</pre>
    swap(a, i, j)
    i = i + 1
swap(a, l, i - 1)
```


<u>Initialization</u>: Show that the loop invariant is true before the loop starts

- No numbers in a[l+1 ..= i-1]
- 2. No numbers in a[i ..= j-1]

Loop Invariant: At the start of the iteration with indices i and j:

- All items in a[I+1 ..= i-1] are < pivot
- All items in a[i ..= j-1] are \geq pivot

FUNCTION Partition(a, l, r)

```
pivot_value = a[l]
i = 1 + 1
FOR j IN [l + 1 ..< r]
  IF a[j] < pivot_value</pre>
    swap(a, i, j)
    i = i + 1
swap(a, l, i - 1)
```


Maintenance (case 1): Show that the loop invariant holds when executing any iteration

- Suppose conditions 1 and 2 are met.
- Now, suppose a[j] < pivot

Loop Invariant: At the start of the iteration with indices i and j:

- 1. All items in a[l+1 ..= i-1] are < pivot
- 2. All items in a[i ..= j-1] are \geq pivot

FUNCTION Partition(a, l, r)

```
pivot_value = a[l]

i = l + 1

FOR j IN [l + 1 .. < r]

true a[j] < pivot_value

swap(a, i, j)

i = i + 1

swap(a, l, i - 1)</pre>
```


Maintenance (case 1):

- Suppose conditions 1 and 2 are met.
- Now, suppose a[j] < pivot
- Then a[j] and a[i] are swapped
- By (2), a[i] was > pivot so now
 a[i] < pivot and a[j] > pivot

Loop Invariant: At the start of the iteration with indices i and j:

- L. All items in a[l+1 ..= i-1] are < pivot</pre>
- 2. All items in a[i ..= j-1] are \geq pivot

FUNCTION Partition(a, l, r)

```
pivot_value = a[l]
i = l + 1
FOR j IN [l + 1 ..< r]</pre>
```


Maintenance (case 1):

- Suppose conditions 1 and 2 are met.
- Now, suppose a[j] < pivot
- Then a[j] and a[i] are swapped
- By (2), a[i] was > pivot so now
 a[i] < pivot and a[j] > pivot

Loop Invariant: At the start of the iteration with indices i and j:

- 1. All items in a[l+1 ..= i-1] are < pivot
- 2. All items in a[i ..= j-1] are \geq pivot

FUNCTION Partition(a, l, r)

```
pivot_value = a[l]
i = l + 1
FOR j IN [l + 1 ... < r]</pre>
```


Maintenance (case 1):

- Suppose conditions 1 and 2 are met.
- Now, suppose a[j] < pivot
- Then a[j] and a[i] are swapped
- By (2), a[i] was > pivot so now
 a[i] < pivot and a[j] > pivot
- Incrementing i and j satisfies 1 and 2

Loop Invariant: At the start of the iteration with indices i and j:

- L. All items in a[l+1 ..= i-1] are < pivot</pre>
- 2. All items in a[i ..= j-1] are \geq pivot

FUNCTION Partition(a, I, r)

```
pivot_value = a[l]
i = l + 1
FOR j IN [l + 1 ..< r]</pre>
```

true Fa[i] < pivot_value

swap(a, i, j)

i - i + 1

i = i + 1

swap(a, l, i - 1)

Maintenance (case 2):

- Suppose conditions 1 and 2 are met.
- Now, suppose a[j] ≥ pivot

Loop Invariant: At the start of the iteration with indices i and j:

- All items in a[I+1 ..= i-1] are < pivot
- All items in a[i ..= j-1] are \geq pivot

FUNCTION Partition(a, l, r)

```
pivot_value = a[l]
i = 1 + 1
FOR j IN [l + 1 ..< r]
```

false [F a [i]] < pivot_value swap(a, i, j)

$$i = i + 1$$

swap(a, l, i - 1)

Maintenance (case 2):

- Suppose conditions 1 and 2 are met.
- Now, suppose a[j] ≥ pivot
- We do not change i so (1) holds

Loop Invariant: At the start of the iteration with indices i and j:

- L. All items in a[l+1 ..= i-1] are < pivot</pre>
- 2. All items in a[i ..= j-1] are $\geq pivot$

FUNCTION Partition(a, l, r)

```
pivot_value = a[l]
i = l + 1
FOR j IN [l + 1 ..< r]</pre>
```

false IF a[i] < pivot_value swap(a, i, j) i = i + 1swap(a, l, i - 1)

Maintenance (case 2):

- Suppose conditions 1 and 2 are met.
- Now, suppose a[j] ≥ pivot
- We do not change i so (1) holds
- We increment j so (2) holds

Loop Invariant: At the start of the iteration with indices i and j:

- L. All items in a[l+1 ..= i-1] are < pivot</pre>
- 2. All items in a[i ..= j-1] are \geq pivot

FUNCTION Partition(a, l, r)

```
pivot_value = a[l]
i = l + 1
FOR j IN [l + 1 ..< r]</pre>
```

false [F a[j] < pivot_value

$$i = i + 1$$

swap(a, l, i - 1)

<u>Termination</u>: Show that the loop invariant holds once the loop ends

- Assume (1) and (2) are true
- Now j = r
- All items have been considered
- All items in a[l+1 ..= i-1] are < pivot
- All items in a[i ..= j-1] are ≥ pivot

Loop Invariant: At the start of the iteration with indices i and j:

- 1. All items in a[l+1 ..= i-1] are < pivot
- 2. All items in a[i ..= j-1] are \geq pivot

FUNCTION Partition(a, l, r)

```
pivot_value = a[l]
i = l + 1

FOR j IN [l + 1 ... < r]
    IF a[j] < pivot_value
        swap(a, i, j)
        i = i + 1

swap(a, l, i - 1)

RETURN i - 1</pre>
```


After the loop we perform the final swap

Loop Invariant: At the start of the iteration with indices i and j:

- L. All items in a[l+1 ..= i-1] are < pivot</pre>
- 2. All items in a[i ..= j-1] are \geq pivot

FUNCTION Partition(a, l, r)

```
pivot_value = a[l]
i = l + 1

FOR j IN [l + 1 ..< r]
    IF a[j] < pivot_value
        swap(a, i, j)
        i = i + 1

swap(a, l, i - 1)

RETURN i - 1</pre>
```

What do we need to do?

Input: an array of n items in arbitrary order

Output: the same number in non-decreasing order

Assumptions: the items must be orderable (from an ordinal set)

Theorem: the Quicksort algorithm arranges all items in non-decreasing order.

- 1. Lemma: see proof by loop invariant of Partition
- 2. Lemma involving QuickSort

Theorem: the Quicksort algorithm arranges all items in non-decreasing order.

1. Lemma 1:

Loop Invariant: At the start of the iteration with indices i and j:

- 1. All items in array[l+1 ..= i-1] are < pivot_value
- 2. All items in array[i ..= j-1] are ≥ pivot_value
 (See corresponding proof by loop invariant)

1. Lemma 2 involving QuickSort

Proof by Induction in General

Some property P that we want to prove

- A <u>base case</u>: some statement regarding P(1)
- An inductive hypothesis: assume we know that P(n) is true
- An inductive step: if P(n) is correct then so is P(n+1) because...

For quicksort we are going to use a slightly different form

- If P(k) where k < n is correct, then P(n) is also correct
- An inductive hypothesis: assume we know that P(k) is true
- An inductive step: if P(k) is correct then so is P(n) because...

Proof by Induction Cheat-sheet

Proof by induction that P(n) holds for all n

- 1. P(1) holds because < something about the code/problem >
- 2. Let's assume that P(k) (where k < n) holds.
- 3. P(n) holds because of P(k) and <something about the code>
- 4. Thus, by induction, P(n) holds for all n

Proof by induction that P(n) holds for all n

- P(1) holds because ...
- Let's assume that P(k) (where k < n) holds.
- P(n) holds because of P(k) and ...
- Thus, by induction, P(n) holds for all n

$$P(n) =$$

Proof by induction that P(n) holds for all n

- P(1) holds because ...
- Let's assume that P(k) (where k < n) holds.
- P(n) holds because of P(k) and ...
- Thus, by induction, P(n) holds for all n

P(n) = arranges all items in non-decreasing order.

• P(1)

Proof by induction that P(n) holds for all n

- P(1) holds because ...
- Let's assume that P(k) (where k < n) holds.
- P(n) holds because of P(k) and ...
- Thus, by induction, P(n) holds for all n

P(n) = arranges all items in non-decreasing order.

- P(1) is an array of one element, and any such array is always sorted.
- Assume (hypothesis)
- P(n) holds because:

Proof by induction that P(n) holds for all n

- P(1) holds because ...
- Let's assume that P(k) (where k < n) holds.
- P(n) holds because of P(k) and ...
- Thus, by induction, P(n) holds for all n

P(n) = arranges all items in non-decreasing order.

- P(1) is an array of one element, and any such array is always sorted.
- Assume (hypothesis) that P(k) is correct for k < n
- P(n) holds because:
 - Let k_{left} , k_{right} = the lengths of the left and right subarrays
 - k_{left} , k_{right} < n (strictly less than n)
 - By our inductive hypothesis, the left and right subarrays are correctly sorted
 - The partition loop-invariant guarantees that the pivot is in the correct spot

Proof by induction that P(n) holds for all n

- P(1) holds because ...
- Let's assume that P(k) (where k < n) holds.
- P(n) holds because of P(k) and ...
- Thus, by induction, P(n) holds for all n

P(n) = arranges all items in non-decreasing order.

• P(1) is an array of one element, and any such array is always sorted.

Base case

Assume (hypothesis) that P(k) is correct for k < n

Inductive Hypothesis

- P(n) holds because:
 - Let k_{left} , k_{right} = the lengths of the left and right subarrays

Inductive Step

- k_{left} , k_{right} < n (strictly less than n)
- By our inductive hypothesis, the left and right subarrays are correctly sorted
- The partition loop-invariant guarantees that the pivot is in the correct spot

Theorem: the Quicksort algorithm arranges all items in non-decreasing order.

1. Lemma 1:

Loop Invariant: At the start of the iteration with indices i and j:

- 1. All items in array[l+1 ..= i-1] are < pivot_value
- 2. All items in array[i ..= j-1] are ≥ pivot_value
 (See corresponding proof by loop invariant)

1. Lemma 2:

P(n) = Quicksort arranges all items in non-decreasing order. (See corresponding proof by induction)