Quicksort Correctness Proof

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

e Learn how quicksort works
* Learn how to partition an array

* Quicksort loop invariant

Extra Resources

* https://me.dt.in.th/page/Quicksort/
* https://www.youtube.com/watch?v=ywWBy6J5gz8

* CLRS Chapter 7
* Algorithms llluminated Chapter 5

https://me.dt.in.th/page/Quicksort/
https://www.youtube.com/watch?v=ywWBy6J5gz8

What do we need to do?

Input: an array of n items in arbitrary order
Output: the same number in non-decreasing order
Assumptions: the items must be orderable (from an ordinal set)

Theorem: the Quicksort algorithm arranges all items in non-decreasing
order.

1. Lemma involving Partition
2. Lemma involving QuickSort

31 47 11 91 67 23 89 51

31 47 11 91 67 23 89 51

11 23 /31 51 89 67 91 47

(partition)
11 23 (doesn't match function from slides)

Not a copy! (In-place)

base

Not a copy!

11| 23
11| 23

23

.47 11 91 67 23 89 51

—

_—

base

11 23.51 89 67 91 47

(partition)
(doesn't match function from slides)

base

Not a copy!

11| 23
11| 23

23

.47 11 91 67 23 89 51

—

_—

base

11 23.51 89 67 91 47

(partition)
(doesn't match function from slides)

\\\\\\\\\\\\$ Not a copy!

51 89 67 91 47

base

Not a copy!

11| 23
11| 23

23

.47 11 91 67 23 89 51

—

)

base

11 23.51 89 67 91 47
(partition)

Not a copy!

(doesn't match function from slides) 89 67 91 47

47 (51 91 67 89

>~

47
base

91 67 89

.47 11 91 67 23 89 51

Not a copy! / Lo | 28 . e el R e Not a copy!
(partition)

. 23 (doesn't match function from slides) 89 67 91 47

11| 23 47 (51 91 67 89

base 23 47 . 67 89

base base

10

.47 11 91 67 23 89 51

Not a copy! / Lo | 28 . e el R e Not a copy!
(partition)

. 23 (doesn't match function from slides) 89 67 91 47

11| 23 47 (51 91 67 89

base 23 47 . 67 89

base base

11 23 31 47 51 67 89 91 67| 89

base 89

11

.47 11 91 67 23 89 51

Not a copy! / Lo | 28 . e el R e Not a copy!
(partition)

. 23 (doesn't match function from slides) 89 67 91 47
11| 23 47 (51 91 67 89
base 23 47 91 67 89
base base

. 89 base

11 23 31 47 51 67 89 91 89

base 89
base

12

Partition proof of correctness

67 44 21 .87 5
m 0 1 left left + 1 right - 1

101
right

y —

FUNCTION Partition(array, left_index, right_index)
pivot_value = array[left_index]
i = left_index + 1
FORj IN [left_index + 1 ..< right_index]
IF array[j] < pivot_value

swap(array, i, j)

i=i+1
swap(array, left_index, i-1)

RETURN -1

-31
right + 1

13

Partition proof of correctness

67 44 21 .87 5 101 31
m 0 1 left left +1 right - 1 right right + 1 n-

’ ——

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

i = left_index + 1 How do we prove that
FOR j IN [left_index + 1 ..< right_index] Partition is correct?

IF array[j] < pivot_value
swap(array, i, j)
i=i+1
swap(array, left_index, i-1)

RETURN -1

Loop Invariant Proofs

1. State the loop invariant
1. A statement that can be easily proven true or false
2. The statement should
3. The statement should

Initialization
2. Show that the loop invariant is true before the loop starts

Maintenance
3. Show that the loop invariant holds when executing any iteration

4. Show that the loop invariant holds once the loop ends | Termination

1. State the loop invariant

Pa rtition prOOf Of correcti 1. A statement that can be easily

proven true or false

67 44 91 87) 2. The statement should reference
| index [1 left left + 1) the purpose of the loop
/ | 3. The statement should reference
FUNCTION Partition(array, left_index, right_index) variables that change each iteration
pivot_value = array[left_index] Initialization
i = left_index + 1 2. Show that the loop invariant is true
FORj IN [left_index + 1 ..< right_index] before the |OOp starts
IF array|j] < pivot_value Maintenance
swap(array, i,) 3. Show that the loop invariant holds

ian when executing any iteration

swap(array, left_index, i- 1)
4. Show that the loop invariant holds
once the loop ends

Terminaticl)b_n

RETURN -1
Exercise

Partition proof of correctness

67 44 21 .87 5 101 31 4
m 0 1 left left +1 right - 1 right right + 1 n-1

’ ——

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]
i = left_index + 1 How do we prove that

FORj IN [left_index + 1 ..< right_index] Partition is correct?

IF array[j] < pivot_value

swap(array, i, j)

i=i+1
Loop Invariant: At the start of the iteration with indices i and j:
1. Allitemsinarray[l+1 ..= i-1] are<pivot value
RETURN i -1 2. Allitemsinarray[i ..= j-1] are2pivot value

swap(array, left_index, i-1)

17

Loop Invariant: At the start of the
iteration with indices i and j:

1. Allitemsina[l+1 ..=i-1] are < pivot
2. Allitemsin ali..=j-1] are > pivot

Partition Proof

FUNCTION Partition(a, I, r)
pivot_value = all]
i=1+1
FORjIN[I+1.<r]

IF a[j] < pivot_value

1

i=i+1

swap(a, |, i-1)

RETURNi-1 18

Loop Invariant: At the start of the

Pa rt|t|0 N PrOOf iteration with indices i and j:

1. Allitemsina[l+1 ..=i-1] are < pivot
2. Allitemsin ali..=j-1] are > pivot

‘ i FUNCTION Partition(a, 1, r)
pivot_value = all]
Initialization: Show that the loop i=1+1
invariant is true before the loop starts FORJjIN[I+1..<r]
IF a[j] < pivot_value
1. No numbersin all+1 ..=i-1] swap(a, i, j)
2. Nonumbersinali.=j-1] i=i+1
swap(a, |, i-1)
RETURN -1 19

Partition Proof

Loop Invariant: At the start of the
iteration with indices i and j:

1. Allitemsina[l+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are = pivot

Maintenance (case 1): Show that the
loop invariant holds when executing any
iteration

e Suppose conditions 1 and Za}me'(

* Now, suppose a[j] < pivot

FUNCTION Partition(a, |, r)
pivot_value = a]l]
i=1+1

FORjIN[I+1.<r]

m alj] < pivot_value
ma, i)
i=i+1

swap(a, |, i-1)

RETURNi-1 20

e Loop Invariant: At the start of the
Pa rt|t|0 N PrOOf iteraption with indices i and j:
1. Allitemsina[l+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are = pivot
- I e -
FUNCTION Partition(a, 1, r)
pivot_value = all]
Maintenance (case 1): i=1+1
* Suppose conditions 1 and 2 are met. FORJIN[I+1..<r]
 Now, suppose afj] < pivot mP&H] < pivot_value
* Then a[j] and ali] are swapped swap(a, i, j)
By (2), a[i] was > pivot so now i=i+1
ali] < pivot and alj] > pivot swap(a, |, i-1)
RETURN -1 21

e Loop Invariant: At the start of the
Pa rt|t|0 N PrOOf iteraption with indices i and j:
1. Allitemsina[l+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are = pivot
- I -
FUNCTION Partition(a, 1, r)
pivot_value = all]
Maintenance (case 1): i=1+1
* Suppose conditions 1 and 2 are met. FORJIN[I+1..<r]
 Now, suppose afj] < pivot mP&H] < pivot_value
* Then a[j] and ali] are swapped swap(a, i, j)
By (2), a[i] was > pivot so now i=i+1
ali] < pivot and alj] > pivot swap(a, |, i-1)
RETURN -1 22

Loop Invariant: At the start of the
iteration with indices i and j:

1. Allitemsina[l+1 ..=i-1] are < pivot
2. Allitemsin ali..=j-1] are > pivot

Partition Proof

ﬁ ﬁ FUNCTION Partition(a, 1, r)
pivot_value = all]

Maintenance (case 1): i=1+1
* Suppose conditions 1 and 2 are met. FORJIN[I+1..<r]
 Now, suppose afj] < pivot mP&H] < pivot_value
* Then a[j] and ali] are swapped swap(a, i, j)
By (2), a[i] was > pivot so now i=i+1

ali] < pivot and alj] > pivot swap(a, |, i-1)
* Incrementingiand j satisfies 1 and 2 RETURN -1 =

Loop Invariant: At the start of the
iteration with indices i and j:

1. Allitemsina[l+1 ..=i-1] are < pivot
2. Allitemsin ali..=j-1] are > pivot

Partition Proof

ﬁ FUNCTION Partition(a, I, r)

pivot_value = a|l]

Maintenance (case 2): i=1+1
* Suppose conditions 1 and 2 are met. FORJIN[I+1..<r]

* Now, suppose alj] 2 pivot mlﬁa{i] < pivot_value

i=i+1
swap(a, |, i-1)
RETURN -1 24

e Loop Invariant: At the start of the
Pa rt|t|0 N PrOOf iteraption with indices i and j:
1. Allitemsina[l+1 ..=i-1] are < pivot
2. Allitemsin ali..=j-1] are > pivot
- R -
ﬁ FUNCTION Partition(a, I, r)
pivot_value = a|l]

Maintenance (case 2): i=1+1

* Suppose conditions 1 and 2 are met. FORJIN[I+1..<r]

* Now, suppose a[j] 2 pivot WHLBH] < pivot_value

« We do not change iso (1) holds swap(a, i, j)

i=i+1

swap(a, |, i-1)
RETURNi-1 25

.y Loop Invariant: At the start of the
Pa rt|t|0 N PrOOf iteraption with indices i and j:
1. Allitemsina[l+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are = pivot
FUNCTION Partition(a, 1, r)
pivot_value = all]

Maintenance (case 2): i=1+1

* Suppose conditions 1 and 2 are met. FORjIN[l+1..<r]

* Now, suppose alj] 2 pivot WHLBH] < pivot_value

« We do not change iso (1) holds swap(a, i, j)

e Weincrement jso (2) holds i=i+1

swap(a, |, i-1)
RETURNi-1 26

Partition Proof

n

o

Loop Invariant: At the start of the
iteration with indices i and j:

1. Allitemsina[l+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are = pivot

Termination: Show that the loop

invariant holds once the loop ends
« Assume (1) and (2) are true
* Nowj=r

c A
c A
c A

items have been considered
itemsin all+1 ..=i-1] are < pivot
items in ali ..=j-1] are = pivot

FUNCTION Partition(a, I, r)
pivot_value = a]l]
i=1+1
FORjIN[I+1.<r]
IF a[j] < pivot_value

swap(a, i, j)

i=i+1
swap(a, |, i-1)
RETURN i - 1 !

Loop Invariant: At the start of the
iteration with indices i and j:

1. Allitemsina[l+1 ..=i-1] are < pivot
2. Allitemsin ali..=j-1] are > pivot

Partition Proof

FUNCTION Partition(a, I, r)
pivot_value = a|l]
After the loop we perform the final i=l+1
swap FORjIN[I+1.<r]

IF a[j] < pivot_value
i=i+1

swap(a, |, i-1)

RETURNi-1 28

What do we need to do?

Input: an array of n items in arbitrary order
Output: the same number in non-decreasing order
Assumptions: the items must be orderable (from an ordinal set)

Theorem: the Quicksort algorithm arranges all items in non-decreasing
order.

1. Lemma: see proof by loop invariant of Partition
2. Lemma involving QuickSort

Theorem: the Quicksort algorithm arranges all items in non-
decreasing order.

Loop Invariant: At the start of the iteration with indices i and j:
1. Allitemsinarray[l+l ..= i-1] are<pivot value
2. Allitemsinarray/[i ..= J-1] arezpivot value

(See corresponding proof by loop invariant)

1. Lemma 2 involving QuickSort

30

Proof by Induction in General

Some property P that we want to prove

* A base case: some statement regarding

* An inductive hypothesis: we know that is true
* An inductive step: if is correct then so is because...

For quicksort we are going to use a slightly different form

 If P(k) where k < n is correct, then P(n) is also correct

* An inductive hypothesis: assume we know that is true
* An inductive step: if is correct then so is because...

Proof by Induction Cheat-sheet

Proof by induction that holds for all n
P(1) holds because

1.

2
3.
4. Thus, by induction,

o

. Let’s assume that P(k) (where k < n) holds.
holds because of P(k) and
holds for all n

We can infer all intermediate jumps due to steps 1 and 3.

32

Proof by induction that
* P(1) holds because ...

Quicksort Proof

* Thus, by induction,

holds for all n

e Let’s assume that P(k) (where k < n) holds.

holds because of P(k) and ...

holds for all n

p(n) = [

33

Proof by induction that holds for all n
* P(1) holds because ...

Quicksort Proof

holds because of P(k) and ...

* Thus, by induction, holds for all n

e Let’s assume that P(k) (where k < n) holds.

P(n) = arranges all items in non-decreasing ordetr.

P

34

Proof by induction that holds for all n
* P(1) holds because ...

Quicksort Proof

holds because of P(k) and ...

* Thus, by induction, holds for all n

e Let’s assume that P(k) (where k < n) holds.

P(n) = arranges all items in non-decreasing ordetr.
* P(1) is an array of one element, and any such array is always sorted.

* Assume (hypothesis) [

* P(n) holds because:

35

Proof by induction that holds for all n

holds because ...

Quicksort Proof

* Let’s assume that (where k < n) holds.
holds because of and ...
D * Thus, by induction, holds for all n

P(n) = arranges all items in non-decreasing ordetr.
* P(1) is an array of one element, and any such array is always sorted.
* Assume (hypothesis) that P(k) is correct for k < n

* P(n) holds because:
* Let Kieryy Kignt = the lengths of the left and right subarrays
* Kierty Krigne < 1 (strictly less than n)
* By our inductive hypothesis, the left and right subarrays are correctly sorted
* The partition loop-invariant guarantees that the pivot is in the correct spot

Proof by induction that holds for all n

holds because ...

Quicksort Proof

* Let’s assume that (where k < n) holds.
holds because of and ...
D * Thus, by induction, holds for all n

P(n) = arranges all items in non-decreasing ordetr.

Base case

* P(1) is an array of one element, and any such array is always sorted.
* Assume (hypothesis) that P(k) is correct for k < n Inductive Hypothesis

* P(n) holds because:
* Let Kieryy Kignt = the lengths of the left and right subarrays
* Kierty Krigne < 1 (strictly less than n)
* By our inductive hypothesis, the left and right subarrays are correctly sorted
* The partition loop-invariant guarantees that the pivot is in the correct spot

Inductive Step

Theorem: the Quicksort algorithm arranges all items in non-
decreasing order.

Loop Invariant: At the start of the iteration with indices i and j:
1. Allitemsinarray[l+l ..= i-1] are<pivot value
2. Allitemsinarray/[i ..= J-1] arezpivot value

(See corresponding proof by loop invariant)

P(n) = Quicksort arranges all items in non-decreasing order.

(See corresponding proof by induction)

	Slide 1: Quicksort Correctness Proof
	Slide 2: Outline
	Slide 3: Extra Resources
	Slide 4: What do we need to do?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Partition proof of correctness
	Slide 14: Partition proof of correctness
	Slide 15: Loop Invariant Proofs
	Slide 16: Partition proof of correctness
	Slide 17: Partition proof of correctness
	Slide 18: Partition Proof
	Slide 19: Partition Proof
	Slide 20: Partition Proof
	Slide 21: Partition Proof
	Slide 22: Partition Proof
	Slide 23: Partition Proof
	Slide 24: Partition Proof
	Slide 25: Partition Proof
	Slide 26: Partition Proof
	Slide 27: Partition Proof
	Slide 28: Partition Proof
	Slide 29: What do we need to do?
	Slide 30
	Slide 31: Proof by Induction in General
	Slide 32: Proof by Induction Cheat-sheet
	Slide 33: Quicksort Proof
	Slide 34: Quicksort Proof
	Slide 35: Quicksort Proof
	Slide 36: Quicksort Proof
	Slide 37: Quicksort Proof
	Slide 38

