
Quicksort Implementation
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

• Learn how quicksort works

• Learn how to partition an array

Exercise

• Partitioning

2

Extra Resources

• https://me.dt.in.th/page/Quicksort/

• https://www.youtube.com/watch?v=ywWBy6J5gz8

• CLRS Chapter 7

3

https://me.dt.in.th/page/Quicksort/
https://www.youtube.com/watch?v=ywWBy6J5gz8

Quicksort

• A practical and simple algorithm

• The running time = O(n lg n)

• Superior to other O(n lg n) in some respects

• The hidden constants are small (hidden by Big-O)

• Our first stochastic algorithm

4

Quicksort

Input : an array of n elements in any order

Output : a reordering of the input array such that the elements are in
non-decreasing order

Key idea of Quicksort: partition the array around a pivot element

5

Key concept of Quicksort

• Pick an element and call it the pivot

• Partition (rearrange) the elements so that:
• Everything to the left of the pivot is less than the pivot

• Everything to the right of the pivot is greater than the pivot

• Let’s ignore ties for now

• This is a partial sorting into “buckets”

• What can you tell me about the pivot?

• Pivot is now in the correct spot (we’ve made progress!)

What would be the running time of
calling partition on every element?

6

3 8 2 5 1 4 7 6

Partitioning

3 82 51 476

7

3 8 2 5 1 4 7 6

2 1 3 6 7 4 5 8

Partitioning

< P P > P

8

Pivot around “hello”
[“hello”, “are”, “you”, “how”, “today”, “doing”, “class”]

Quicksort (NOT IN-PLACE PARTITIONING)

1. FUNCTION BadQuicksort(array)

2. IF array.length ≤ 1

3. RETURN array

4.

5. pivot_index = ChoosePivot(array.length)

6. left_array, right_array = Partition(array, pivot_index)

7.

8. left_sorted = BadQuicksort(left_array)

9. right_sorted = BadQuicksort(right_sorted)

10.

11. RETURN left_sorted ++ array[pivot_index] ++ right_sorted

What is the recurrence
equation for Quicksort?

10

Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

11

Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array

12

Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 8

13

Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 2 8

14

Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 2 5 8

15

Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 2 1 5 8

16

Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 1 2 3 6 7 4 5 8

17

Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

• This would be like merge sort.

• Lots of memory allocations (one for each node in the recursion tree).

3 8 2 5 1 4 7 6Original array

New array 1 2 3 6 7 4 5 8

18

Partitioning the Easy Way

• Nothing inherently wrong with this approach in theory

• But can we do the same thing without the extra memory?

• Note: implementing merge sort “in-place” is possible

• You can do so with an iterative (stack based) approach

19

Partitioning In-Place

• For now, assume that the pivot is in the first spot of a subarray

• (we can swap the pivot with the first spot if needed)

• Idea: gradually build up a subarray that is correctly partitioned by
scanning through the array

P < P > P Un-partitioned

20

Partitioning In-Place

P < P > P Un-partitioned

i j

3 8 2 5 1 4 7 6

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

21

P < P > P Un-partitioned

i j

3 8 2 5 1 4 7 6

i j

Un-partitioned

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 8 belong?

How do I put it there?

How should we initialize i and j?

22

3 8 2 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 2 belong?

How do I put it there?

23

3 8 2 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

swap

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 2 belong?

How do I put it there?

24

3 2 8 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 2 belong?

How do I put it there?

Now what?
25

3 2 8 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 5 belong?

How do I put it there?

26

3 2 8 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 1 belong?

How do I put it there?

27

3 2 8 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

swap

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 1 belong?

How do I put it there?

28

3 2 1 5 8 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

swap

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 1 belong?

How do I put it there?

Now what? 29

3 2 1 5 8 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

30

3 2 1 5 8 4 7 6

i j

P < P > P Un-partitioned

i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

Now what?

31

3 2 1 5 8 4 7 6

i j

P < P > P Un-partitioned

i j

swap

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

32

1 2 3 5 8 4 7 6

33

1. FUNCTION Partition(array, left_index, right_index)
2. # Partition the subarray array[left_index ..< right_index]
3. # around the value at left_index
4.
5. pivot_value = array[left_index]
6.
7. i = left_index + 1
8. FOR j IN [left_index + 1 ..< right_index]
9. IF array[j] < pivot_value
10. swap(array, i, j)
11. i = i + 1
12.
13. swap(array, left_index, i - 1)
14. RETURN i - 1

1.O(n), where n is
right_index - left_index

2.In-place
no extra memory

What is the asymptotic running time?

34

1. FUNCTION QuickSort(array, left_index, right_index)

2. IF (left_index + 1) ≥ right_index

3. RETURN

4.

5. MovePivotToLeft(left_index, right_index)

6. pivot_index = Partition(array, left_index, right_index)

7.

8. QuickSort(array, left_index, pivot_index)

9. QuickSort(array, pivot_index + 1, right_index)

Our Partition function
expects the pivot element to

be at left_index

35

1. FUNCTION QuickSort(array, left_index, right_index)

2. IF left_index ≥ right_index

3. RETURN

4.

5. MovePivotToLeft(left_index, right_index)

6. pivot_index = Partition(array, left_index, right_index)

7.

8. QuickSort(array, left_index, pivot_index)

9. QuickSort(array, pivot_index + 1, right_index)

Our Partition function
expects the pivot element to

be at left_index

How would you call QuickSort?

36

	Slide 1: Quicksort Implementation
	Slide 2: Outline
	Slide 3: Extra Resources
	Slide 4: Quicksort
	Slide 5: Quicksort
	Slide 6: Key concept of Quicksort
	Slide 7: Partitioning
	Slide 8: Partitioning
	Slide 9: Pivot around “hello”
	Slide 10: Quicksort (NOT IN-PLACE PARTITIONING)
	Slide 11: Partitioning the Easy Way
	Slide 12: Partitioning the Easy Way
	Slide 13: Partitioning the Easy Way
	Slide 14: Partitioning the Easy Way
	Slide 15: Partitioning the Easy Way
	Slide 16: Partitioning the Easy Way
	Slide 17: Partitioning the Easy Way
	Slide 18: Partitioning the Easy Way
	Slide 19: Partitioning the Easy Way
	Slide 20: Partitioning In-Place
	Slide 21: Partitioning In-Place
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

