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Outline

Topics and Learning Objectives

• Learn how quicksort works

• Learn how to partition an array

Exercise

• Partitioning
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Extra Resources

• https://me.dt.in.th/page/Quicksort/

• https://www.youtube.com/watch?v=ywWBy6J5gz8

• CLRS Chapter 7
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Quicksort

• A practical and simple algorithm

• The running time = O(n lg n)

• Superior to other O(n lg n) in some respects

• The hidden constants are small (hidden by Big-O) 

• Our first stochastic algorithm
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Quicksort

Input : an array of n elements in any order

Output : a reordering of the input array such that the elements are in 
non-decreasing order

Key idea of Quicksort: partition the array around a pivot element
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Key concept of Quicksort

• Pick an element and call it the pivot

• Partition (rearrange) the elements so that:
• Everything to the left of the pivot is less than the pivot

• Everything to the right of the pivot is greater than the pivot

• Let’s ignore ties for now

• This is a partial sorting into “buckets”

• What can you tell me about the pivot?

• Pivot is now in the correct spot (we’ve made progress!)

What would be the running time of 
calling partition on every element?
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3 8 2 5 1 4 7 6

Partitioning

3 82 51 476
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3 8 2 5 1 4 7 6

2 1 3 6 7 4 5 8

Partitioning

< P P > P
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Pivot around “hello”
[“hello”, “are”, “you”, “how”, “today”, “doing”, “class”]



Quicksort (NOT IN-PLACE PARTITIONING)

1. FUNCTION BadQuicksort(array)

2. IF array.length ≤ 1

3. RETURN array

4.  

5. pivot_index = ChoosePivot(array.length)

6. left_array, right_array = Partition(array, pivot_index)

7.  

8. left_sorted = BadQuicksort(left_array)

9. right_sorted = BadQuicksort(right_sorted)

10.  

11. RETURN left_sorted ++ array[pivot_index] ++ right_sorted

What is the recurrence 
equation for Quicksort?
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Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array
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Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array
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Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 8

13



Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 2 8
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Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 2 5 8
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Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 2 1 5 8
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Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 1 2 3 6 7 4 5 8
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Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)

• Copy all elements to a new array

• This would be like merge sort. 

• Lots of memory allocations (one for each node in the recursion tree).

3 8 2 5 1 4 7 6Original array

New array 1 2 3 6 7 4 5 8
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Partitioning the Easy Way

• Nothing inherently wrong with this approach in theory

• But can we do the same thing without the extra memory?

• Note: implementing merge sort “in-place” is possible

• You can do so with an iterative (stack based) approach
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Partitioning In-Place

• For now, assume that the pivot is in the first spot of a subarray

• (we can swap the pivot with the first spot if needed)

• Idea: gradually build up a subarray that is correctly partitioned by 
scanning through the array

P < P > P Un-partitioned
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Partitioning In-Place

P < P > P Un-partitioned

i j

3 8 2 5 1 4 7 6

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition
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P < P > P Un-partitioned

i j

3 8 2 5 1 4 7 6

i j

Un-partitioned

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 8 belong?

How do I put it there?

How should we initialize i and j?
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3 8 2 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 2 belong?

How do I put it there?
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3 8 2 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

swap

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 2 belong?

How do I put it there?
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3 2 8 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 2 belong?

How do I put it there?

Now what?
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3 2 8 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 5 belong?

How do I put it there?
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3 2 8 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 1 belong?

How do I put it there?
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3 2 8 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

swap

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 1 belong?

How do I put it there?
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3 2 1 5 8 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

swap

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 1 belong?

How do I put it there?

Now what? 29



3 2 1 5 8 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned

i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition
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3 2 1 5 8 4 7 6

i j

P < P > P Un-partitioned

i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

Now what?
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3 2 1 5 8 4 7 6

i j

P < P > P Un-partitioned

i j

swap

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition
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1 2 3 5 8 4 7 6
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1. FUNCTION Partition(array, left_index, right_index)
2. # Partition the subarray array[left_index ..< right_index]
3. # around the value at left_index
4.  
5. pivot_value = array[left_index]
6.
7. i = left_index + 1
8. FOR j IN [left_index + 1 ..< right_index]
9. IF array[j] < pivot_value
10. swap(array, i, j)
11. i = i + 1
12.  
13. swap(array, left_index, i - 1)
14. RETURN i - 1

1.O(n), where n is
right_index - left_index

2.In-place
no extra memory

What is the asymptotic running time?
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1. FUNCTION QuickSort(array, left_index, right_index)

2. IF (left_index + 1) ≥ right_index

3. RETURN

4.

5. MovePivotToLeft(left_index, right_index)

6. pivot_index = Partition(array, left_index, right_index)

7.  

8. QuickSort(array, left_index, pivot_index)

9. QuickSort(array, pivot_index + 1, right_index)

Our Partition function 
expects the pivot element to 

be at left_index
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1. FUNCTION QuickSort(array, left_index, right_index)

2. IF left_index ≥ right_index

3. RETURN

4.

5. MovePivotToLeft(left_index, right_index)

6. pivot_index = Partition(array, left_index, right_index)

7.  

8. QuickSort(array, left_index, pivot_index)

9. QuickSort(array, pivot_index + 1, right_index)

Our Partition function 
expects the pivot element to 

be at left_index

How would you call QuickSort?
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