
Insertion Sort
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/
https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

• Warm-Up and introduction

• Specify an algorithm

• Prove correctness

• Analyze total running time

Exercise

• Friend Circles

2

Extra Resources

• Key resources for all lectures in this course:
• Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest and Clifford Stein

• Algorithms Illuminated by Tim Roughgarden

• For this lecture
• Chapter 2 of Introduction to Algorithms, Third Edition

• https://www.toptal.com/developers/sorting-algorithms/

3

https://www.toptal.com/developers/sorting-algorithms/
https://www.toptal.com/developers/sorting-algorithms/
https://www.toptal.com/developers/sorting-algorithms/
https://www.toptal.com/developers/sorting-algorithms/

Survey (answer on Gradescope)

• What do you go by (for example, I go by Tony instead of Anthony)?

• What data structures do you know (any amount of familiarity)?

• What algorithms do you know?

• What programming languages do you know?

4

Friend Circles Exercise

• Read the problem (about 1 minute)
• Find the PDF on the course website

• Discuss with group for about 5 minutes

• Discuss as a class

5

What can you do if your code is too slow?

• Use a better algorithm.

• Use a better data-structure.

• Use a lower-level system.

• Accept a less precise solution.

6

Why Study Algorithms?

They are…

• important for all branches of computer science (networking,
cryptography, graphics, robotics, databases, machine learning, etc.)

• drive innovation (think search engines and marketing),

• a lens into other sciences (economics, control theory), and

• fun! (alternatively: good for interviews)

7

How is mathematical logic used to describe the behavior of functions or
programs? What is a “theorem?” How do you “prove” theorems? What

is an “automatic theorem prover?” What do all these mathematical
terms—“induction,” “generalization,” “lemma”—have to do with

programs being “correct?” How can “programmer’s intuition” guide a
foray into mathematics? How do you think about programs that call

themselves without just going in circles?

--- J Strother Moore, The Little Prover

8

How is mathematical logic used to describe the behavior of functions or programs? What is a “theorem?” How do you “prove” theorems? What is an
“automatic theorem prover?” What do all these mathematical terms—“induction,” “generalization,” “lemma”—have to do with programs being “correct?”

How can “programmer’s intuition” guide a foray into mathematics? How do you think about programs that call themselves without just going in circles?

--- J Strother Moore, The Little Prover

Sometimes, the best way to learn how to do something is just to sit down
and try to do it.

There are two problems with that advice, and the problems are especially
acute when mathematical logic is involved. First, you have to understand the
“rules of the game.” Those rules—if followed exactly—will ensure that what

you “prove” is really true. Second, it is hard to keep in mind the precise
statement of every rule—and if you make a mistake you might end up

believing something is true when it is not.

9

Proofs are a lot like jigsaw puzzles. There are no rules about how jigsaw
puzzles must be solved. The only rule concerns the final product: All the

pieces must fit together, and the picture must look right. The same
holds for proofs.

--- Daniel J. Velleman, How To Prove It

10

Proofs are a lot like jigsaw puzzles. There are no rules about how jigsaw
puzzles must be solved. The only rule concerns the final product: All the

pieces must fit together, and the picture must look right. The same
holds for proofs.

--- Daniel J. Velleman, How To Prove It

Although there are no rules about how jigsaw puzzles must be solved,
some techniques for solving them work better than others.

11

Structure and Language

• I’ll try to use consistent language (theorems, problem statements,
algorithms, etc.)

• I’ll explicitly state the inputs, outputs, and assumptions when they are
useful (when they make the proof easier to understand)

• I’ll mostly use my own flavor or pseudocode (and it will change from
time to time depending on what is useful, i.e., base-0 or base-1)

12

What do we typically analyze?

We can analyze and prove many things

• Running time

• Correctness

• Memory usage

Sometimes we analyze a

1. general problem (like sorting)

2. and sometimes a specific algorithm (like quicksort)

13

Some Useful Terms

• Proof: an argument which convinces other people that something is true

• Theorems: technical statements that are always true (or invalid)

• Lemmas: statements that assist in the proof of theorems

• Corollary: statements that follow immediately from an already-proved result

• Proposition: stand-alone technical statement not particularly important alone

• Axiom (or postulate): a statement taken on faith

14

Guiding Principles for Analysis

Focus on

• Worst-case analysis (not average or best case)

• Big-picture analysis (it’s OK to be a little loose with constant factors)

• Asymptotic analysis (bigger inputs are more interesting)

15

The High-Level Process

• State the theorem (including inputs, outputs, and assumptions)

• Introduce known axioms and useful definitions

• Follow a sequence of logical steps that sometimes includes new
lemmas as a means of making the proof easier to follow and
summarize

• Conclude and summarize (sometimes marked with QED or ∎)

16

Warm-Up

Problem, P(n): sorting an array of items using InsertionSort

• Input: an array of n items, in arbitrary order

• Output: a reordering of the input into nondecreasing order

• Assumptions: none

Clark Potter Granger Weasley Snape Clark Lovegood Malfoy

Clark Clark Granger Lovegood Malfoy Potter Snape Weasley

17

Warm-Up

Problem, P(n): sorting an array of items using InsertionSort

• Input: an array of n items, in arbitrary order

• Output: a reordering of the input into nondecreasing order

• Assumptions: none

We will

• Specify the algorithm (learn my pseudocode),

• Argue that it correctly sorts, and

• Analyze its running time.

18

Specify the algorithm

Insertion Sort

1. FUNCTION InsertionSort(array)

2. FOR j IN [1 ..< array.length]

3. key = array[j]

4. i = j - 1

5. WHILE i ≥ 0 && array[i] > key

6. array[i + 1] = array[i]

7. i = i - 1

8. array[i + 1] = key

9. RETURN array

5 2 4 6 1 3

// Insert “key” into correct
// position to its left.

20

Insertion Sort

1. FUNCTION InsertionSort(array)

2. FOR j IN [1 ..< array.length]

3. key = array[j]

4. i = j - 1

5. WHILE i ≥ 0 && array[i] > key

6. array[i + 1] = array[i]

7. i = i - 1

8. array[i + 1] = key

9. RETURN array

5 2 4 6 1 3

// Insert “key” into correct
// position to its left.

21

Argue that it correctly sorts
Proof of correctness

Insertion Sort Correctness Theorem

Theorem: a proposition that can be proved by a chain of reasoning

For every input array of length n ≥ 1,

InsertionSort reorders the array into nondecreasing order.

23

Insertion Sort – Proof of correctness

Lemma (loop invariant)
• At the start of the iteration with index j, the

subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing
order.

What is a lemma?

 an intermediate theorem in a proof

1.FUNCTION InsertionSort(array)

2. FOR j IN [1 ..< array.length]

3. key = array[j]

4. i = j - 1

5. WHILE i ≥ 0 && array[i] > key

6. array[i + 1] = array[i]

7. i = i - 1

8. array[i + 1] = key

9. RETURN array

24

What is a theorem?
a general proposition not self-evident but proved
by a chain of reasoning; a truth established by
means of accepted truths.

Insertion Sort – Proof of correctness

Lemma (loop invariant)
• At the start of the iteration with index j, the

subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing order.

General conditions for loop invariants
1. Initialization: The loop invariant is satisfied at the beginning

of the loop before the first iteration.

2. Maintenance: If the loop invariant is true before the ith
iteration, then the loop invariant will be true before the i+1
iteration.

3. Termination: When the loop terminates, the invariant gives
us a useful property that helps show that the algorithm is
correct.

1.FUNCTION InsertionSort(array)

2. FOR j IN [1 ..< array.length]

3. key = array[j]

4. i = j - 1

5. WHILE i ≥ 0 && array[i] > key

6. array[i + 1] = array[i]

7. i = i - 1

8. array[i + 1] = key

9. RETURN array

25

Insertion Sort – Proof of correctness

1. Initialization: The loop invariant is satisfied at the
beginning of the loop before the first iteration..

Lemma (loop invariant)

• At the start of the iteration with index j, the
subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing
order.

1.FUNCTION InsertionSort(array)

2. FOR j IN [1 ..< array.length]

3. key = array[j]

4. i = j - 1

5. WHILE i ≥ 0 && array[i] > key

6. array[i + 1] = array[i]

7. i = i - 1

8. array[i + 1] = key

9. RETURN array

26

For to While Loop

FOR j IN [1 ..< array.length]

 …

j = 1

WHILE j < array.length

 …

 j = j + 1

27

1. Initialization: The loop invariant is satisfied at the
beginning of the loop before the first iteration..

Insertion Sort – Proof of correctness

1. Initialization: The loop invariant is satisfied at the
beginning of the loop before the first iteration..

Lemma (loop invariant)

• At the start of the iteration with index j, the
subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing
order.

• When j = 1, the subarray is array[0 ..= 1-1], which
includes only the first element of the array. The single
element subarray is sorted.

1.FUNCTION InsertionSort(array)

2. FOR j IN [1 ..< array.length]

3. key = array[j]

4. i = j - 1

5. WHILE i ≥ 0 && array[i] > key

6. array[i + 1] = array[i]

7. i = i - 1

8. array[i + 1] = key

9. RETURN array

28

Insertion Sort – Proof of correctness

2. Maintenance: If the loop invariant is true
before the ith iteration, then the loop invariant
will be true before the i+1 iteration.

Lemma (loop invariant)

• At the start of the iteration with index j, the
subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing
order.

• Assume array[0 ..= j-1] is sorted. Informally, the
loop operates by moving elements to the right
until it finds the position of key. Next, j is
incremented.

1.FUNCTION InsertionSort(array)

2. FOR j IN [1 ..< array.length]

3. key = array[j]

4. i = j - 1

5. WHILE i ≥ 0 && array[i] > key

6. array[i + 1] = array[i]

7. i = i - 1

8. array[i + 1] = key

9. RETURN array

29

Insertion Sort – Proof of correctness

3. Termination: When the loop terminates, the
invariant gives us a useful property that helps
show that the algorithm is correct.

Lemma (loop invariant)

• At the start of the iteration with index j, the
subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing
order.

1.FUNCTION InsertionSort(array)

2. FOR j IN [1 ..< array.length]

3. key = array[j]

4. i = j - 1

5. WHILE i ≥ 0 && array[i] > key

6. array[i + 1] = array[i]

7. i = i - 1

8. array[i + 1] = key

9. RETURN array

30

For to While Loop

FOR j IN [1 ..< array.length]

 …

j = 1

WHILE j < array.length

 …

 j = j + 1

31

3. Termination: When the loop terminates, the invariant
gives us a useful property that helps show that the
algorithm is correct.

Insertion Sort – Proof of correctness

3. Termination: When the loop terminates, the
invariant gives us a useful property that helps
show that the algorithm is correct.

Lemma (loop invariant)

• At the start of the iteration with index j, the
subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing
order.

• The loop terminates when j = n. Given the
initialization and maintenance results, we have
shown that: array[0 ..= j-1] → array[0 ..= n-1] in
non-decreasing order.

1.FUNCTION InsertionSort(array)

2. FOR j IN [1 ..< array.length]

3. key = array[j]

4. i = j - 1

5. WHILE i ≥ 0 && array[i] > key

6. array[i + 1] = array[i]

7. i = i - 1

8. array[i + 1] = key

9. RETURN array

32

Insertion Sort Correctness Theorem

Theorem: a proposition that can be proved by a chain of reasoning

For every input array of length n ≥ 1,

InsertionSort reorders the array into nondecreasing order.

Given our result from the loop invariant lemma, we have shown that
InsertionSort reorders the array into nondecreasing order.

33

Analyze its running time
Proof of running time

Insertion Sort – Running time

Analyze using the RAM (random access machine) model

• Instructions are executed one after another (no parallelism)

• Each instruction takes a constant amount of time
• Arithmetic (+, -, *, /, %, floor, ceiling)

• Data movement (load, store, copy)

• Control (branching, subroutine calls)

• Ignores memory hierarchy! (never forget: linked lists are awful)

• This is a very simplified way of looking at algorithms

• Compare algorithms while ignoring hardware

35

Insertion Sort Running Time Theorem

Theorem: a proposition that can be proved by a chain of reasoning

For every input array of length n ≥ 1,

InsertionSort performs at most 5n2 operations.

36

Insertion Sort – Running time

What affects the running time of
InsertionSort?

• Number of items to sort
• 3 numbers vs 1000

1.FUNCTION InsertionSort(array)

2. FOR j IN [1 ..< array.length]

3. key = array[j]

4. i = j - 1

5. WHILE i ≥ 0 && array[i] > key

6. array[i + 1] = array[i]

7. i = i - 1

8. array[i + 1] = key

9. RETURN array

38

39

Insertion Sort – Running time

What affects the running time of
InsertionSort?

• Number of items to sort
• 3 numbers vs 1000

• How much are they already sorted
• The hint here is that the inner loop is a while

loop (not a for loop)

1.FUNCTION InsertionSort(array)

2. FOR j IN [1 ..< array.length]

3. key = array[j]

4. i = j - 1

5. WHILE i ≥ 0 && array[i] > key

6. array[i + 1] = array[i]

7. i = i - 1

8. array[i + 1] = key

9. RETURN array

40

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

 Cost
1. 0
2. ?

41

Let’s count the number of operations.

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

 Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

42

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

 Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1

length

43

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

 Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1
?

Loop code always
executes one

fewer time than
the condition

check.

44

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

 Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1
depends

Loop code always
executes one

fewer time than
the condition

check.

Depends on how

sorted array is

45

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

 Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always
executes one

fewer time than
the condition

check.

Depends on how

sorted array is

46

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

 Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always
executes one

fewer time than
the condition

check.

Depends on how

sorted array is

What is the total running time (add up all operations)?

47

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

 Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always
executes one

fewer time than
the condition

check.

Depends on how

sorted array is

Total Running Time = 1 + 2n + (n – 1)(2 + 2 + 4x + (x – 1)(4 + 2) + 3 + 2) + 1
 = 10nx + 5n – 10x – 1

What is the total running time (add up all operations)?

49

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

 Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always
executes one

fewer time than
the condition

check.

Depends on how

sorted array is

Total Running Time = 1 + 2n + (n – 1)(2 + 2 + 4x + (x – 1)(4 + 2) + 3 + 2) + 1
 = 10nx + 5n – 10x – 1
 = 10n + 5n – 10 – 1
 = 15n – 11

What is the best-case scenario? array is already sorted x = ?

x = 1

Is “- 11” a problem? Negative time?
50

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

 Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always
executes one

fewer time than
the condition

check.

Depends on how

sorted array is

Total Running Time = 1 + 2n + (n – 1)(2 + 2 + 4x + (x – 1)(4 + 2) + 3 + 2) + 1
 = 10nx + 5n – 10x – 1
 = 5n2 + 5n – 5n – 1
 = 5n2 – 1

What is the worst-case scenario? array is reverse sorted x = ?

x = n/2 on average

51

52

Best, Worst, and Average

We usually concentrate on worst-case

• Gives an upper bound on the running time for any input

• The worst case can occur fairly often

• The average case is often relatively as bad as the worst case

53

Summary

• Introductions

• (Difficult) Exercise

• Specify an algorithm

• Prove correctness

• Analyze total running time

54

	Slide 1: Insertion Sort
	Slide 2: Outline
	Slide 3: Extra Resources
	Slide 4: Survey (answer on Gradescope)
	Slide 5: Friend Circles Exercise
	Slide 6: What can you do if your code is too slow?
	Slide 7: Why Study Algorithms?
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Structure and Language
	Slide 13: What do we typically analyze?
	Slide 14: Some Useful Terms
	Slide 15: Guiding Principles for Analysis
	Slide 16: The High-Level Process
	Slide 17: Warm-Up
	Slide 18: Warm-Up
	Slide 19: Specify the algorithm
	Slide 20: Insertion Sort
	Slide 21: Insertion Sort
	Slide 22: Argue that it correctly sorts
	Slide 23: Insertion Sort Correctness Theorem
	Slide 24: Insertion Sort – Proof of correctness
	Slide 25: Insertion Sort – Proof of correctness
	Slide 26: Insertion Sort – Proof of correctness
	Slide 27: For to While Loop
	Slide 28: Insertion Sort – Proof of correctness
	Slide 29: Insertion Sort – Proof of correctness
	Slide 30: Insertion Sort – Proof of correctness
	Slide 31: For to While Loop
	Slide 32: Insertion Sort – Proof of correctness
	Slide 33: Insertion Sort Correctness Theorem
	Slide 34: Analyze its running time
	Slide 35: Insertion Sort – Running time
	Slide 36: Insertion Sort Running Time Theorem
	Slide 38: Insertion Sort – Running time
	Slide 39
	Slide 40: Insertion Sort – Running time
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Best, Worst, and Average
	Slide 54: Summary

