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Outline

* Discuss and analyze the Bellman-Ford Algorithm

* Bellman-Ford Walk-through



Dynamic Programming

An algorithm design technique/paradigm that typically takes one of the
following forms:

1. Top-Down (memoization—cache results and use recursion)
2. Bottom-Up (tabulation—store results in a table) /O

- -

Used to solve problems with the following properties:

®,
O==p



Key Idea: leverage

The Bellman-Ford Algorithm

and

A dynamic programming solution to the
Shortest Path problem (same problem solved by Dijkstra’s)

Input:
* a weighted graph G = (V, E) where each edge has a length c_. and
* a source vertex s

Output:
* The length of the shortest path from s to all other vertices, or
* We output that we detected a negative cycle (invalid path lengths)



Question M= Paies Shodest P<in
_ sparseGraphs ___|DenseGraphs

Dijkstra’s n times O(n?Ig n) O(n3Ig n)
Bellman-Ford n times O(n3) O(n%)
Floyd-Warshall O(n3) O(n3)

* What algo/NlEhF}h wo_\ﬁa you chUbJE% fOF%%rap#k\'; dkg\“%\/ &

* Dijkstra’s n times if twqm)hde(ho negitjcle e Floy@@ﬂﬁ%otherwse

* What algorithm would you choose for dense graphs?
* Always Floyd-Warshall



What is the shortest

Example 1 path from Sto T
using O edges?

Subproblem: consider only a subset of the possible paths.



What is the shortest

Example 1 path from Sto T
using 1 edge?




What is the shortest

Exa mple 1 path using 2 edges?

- 9\\6
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What is the shortest What is the shortest
Exa mple 1 path using ? path using 2 edges?
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Example 2

3 2
@@
S
00

What is the shortest path with
at most 1 edge?
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Example 2

Shortest path with
at most 2 edges
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Example 2

We didn’t gain anything by adding the edge

Shortest pat

N Wit

n at most 2 edges

Shortest pat

N wit

n at most 3 edges




Example 2

Shortest path with 2t most 4 edoes

15




If the path is the shortest path from S to

Exa m p | e 2 T using at most 4 edges, then the red

dashed line must be the shortest path
from S to C using at most 3 edges.

Optimal Substructure

Shortest path with

This must be shortest path from Sto C
with at most 3 edgesl 16




The path from D to Cis used as part of

Exa M p | e 2 the shortest path from S to T. And as
part of the shortest path from S to C.

Overlapping Subproblems

The path from D to C is used as part of the Shortest path with

shortest path from Sto Tand fromD to T (and ...) 17



Max Number

Of Edges
On Path

Here’s the table
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FUNCTION BellmanFord(G, start vertex)
n = G.vertices.length

path_lengths = [[INFINITY FOR v IN G.vertices] FOR _ IN [©
path _lengths[0, start vertex] = ©

..< nj]
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FUNCTION BellmanFord(G, start vertex)
n = G.vertices.length

path_lengths = [[INFINITY FOR v IN G.vertices] FOR _ IN [0 ..< n]]
path _lengths[0, start vertex] = ©

FOR num_edges IN [1 ..< n] | Whywon't weneed more than n-1 edges?




FUNCTION BellmanFord(G, start vertex)
n = G.vertices.length e
path_lengths = [[INFINITY FOR v IN G.vertices] FOR __ IN [0 ..< n]]

path _lengths[0, start vertex] = ©

b
) <4
FOR num_edges IN [1 ..< n] |Whywon't weneedmorethann-1edges? | .~ \ Z

FOR v IN G.vertices e
| S T
min len = INFINITY | Allincoming edgesintov }4 \

NS

~\

FOR (vFrom, v) IN G.edges ST

Cost to get to vFrom using at most i-1 edges

len = path"lengthsinummedgesyrwlsmvErom| + G.edges[VvFrom, v].cost
S~ N\
IF len < min_len

min_len len Cost using at most num_edges-1 edges

path_lengths[num_edges, v] = min{path_lengths[num _edges - 1, v],
Cost using at most num_edges .




FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4

Max Number 3

Of Edges | ’)
On Path

1

0

S a b C d
\Y;

22
End Vertex



What does
a single cell
denote?

4
3
2
1
0

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

path _lengths = [[INFINITY FOR v IN G.vertices] FOR _ IN [0 ..< n]]

path_lengths[@, start vertex] = 0

Initialize first row 3

Lengths of paths from s to 2

all other vertices using zero

edges 1
0
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

path _lengths = [[INFINITY FOR v IN G.vertices] FOR _ IN [0 ..< n]]

path_lengths[@, start vertex] = 0
Initialize first row 3

Lengths of paths from s to i 2
all other vertices using zero
edges 1
0 O o2 ©o oo oo
S a b C d
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FOR num_edges IN [1 ..< n]
“"FOR v IN G.vertices
+*¥min_len = INFINITY

"

29
0 “"“" FOR (vFrom, v) IN G.edges

Ae > len = lens[num_edges - 1, vFrom] + c

b

min_len = len
lens[num_edges, v] = min(
lens[num_edges - 1, v], min_len)
-—-—'—'

¢ ?ﬁg F) IF len < min_len
:

Oi -lllll““-
t“‘ ¢““““‘ ."ll‘lllll““-
. num_edges'=-1 4 IPPRTLLLLS
....st “:““ --l‘-l‘a--‘----“ QO“‘
minW =inf l.--l“" i 2 “0“
Nothing taioop 1
over 0 0 oo oo oo oo
S a b C d
VvV
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\

O
, e

A 4

num_edges=1

1

2

2

Ol |IN W b

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
===uxaaa FQR, (VFrom, v) IN G.edges

ens[num_edges - T, VFrom}-» c
Z min_lg,n'
*
_len =*len
*
lens[num_edgés, v] = min(
*
*
lens[nﬂm_edges -1, v], min_len)
0““
‘0
’0
0“
0"
’0
0“
*
0"
‘0
oo oo oo oo
a b C d
Y
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

num_edges =1 4
V=2 3
minW = inf i 2
minW =2 1 2
0 oo oo oo oo
S a b C d
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

num_edges =1 4
v=D>b 3
minW = inf i 2
minW =4 1 2
0 oo oo oo oo
S a b C d
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FO om S

T
len = lens[num_edges - 1, vFrom] + c_

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

num_edges =1 4 tl\ g
v=D>b 3
minW = inf i 2
minW =4 1 2
0 oo oo oo oo
S a b C d
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

num_edges =1 4
v=D>b 3
minW = inf i 2
minW =4 1 2 4
0 oo oo oo oo
S a b C d
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4

There are not any
3

paths of length 1 ,

fromstocord !
1 2 4 oo -
0 oo oo oo oo

S a b C d

32



FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

num_edges =2 4
V=S5 3
minW = inf i 2

1 2 4 oo oo

0 oo oo oo oo

S a b C d
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

num_edges =2 4
V=S5 3
minW = inf i 2 0
1 0 2 4 oo oo
0 0 = = = oo
S a b C d
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

num_edges =2 4
V=2a 3
minW = inf i 2 0
minW =2 1 0 2 4 oo oo
0 0 = = = oo
S a b C d
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

num_edges =2 4
V=2a 3
minW = inf i 2 0 2
minW =2 1 0 2 4 oo oo
0 0 = = = oo
S a b C d
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

num_edges =2 4
v=D>b 3
minW = inf i 2 0 2
minW =4 1 (::) 2 4 oo o0
0 0 = = = oo
S a b C d
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

num_edges =2 4

v=D>b 3

minW = inf i 2 0 2

minW =4 1 0 (}Z) 4 oo o0
minW =3 0 0 oo oo oo oo
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o _,

num_edges =2
V=C

minW = inf
minW =4

2 e 2
1

4

O R |INIW b

o O O

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

@ ° len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

num_edges =2 4
v=d 3
minW = inf i 2 0 2 3 4 8
minW =8 1 0 2 4 oo o0
0 0 = = = =
S a b C d
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

What is our output?

O rr N W b
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What is our output?

We output the
shortest paths
from s to all other
vertices

O rr N W b

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len

min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

| 4 0 2 3 4
What is our output? 3 0 2 3 4 6
Do we need the | : 0 : > :
other rows of the 1 0 2 4 - -
table? L 0 ~ = = =
S a b C d
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What is our output?

Do we need the
other rows of the
table?

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges yﬁ
len én_;[‘num_edges -1, vFr@+ C
IF len < min_Ien

‘Hhﬁs min_len = len

iens[num_edges, V] )= min(
ens[num_edges - 1, v]) min_len)

O rr N W b

= 5
T
2 3
—— o(n®)
a0 O( ™)
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Running Time of Bellman-Ford Algorithm?

O( N V\O’\ edﬁcg 'Ef

e, bt e VE’W/
min_len = INFINITY (ims V:;/ UY\‘ Cl[é@vfd )/

FOR (vFrom, v) IN G.edges The inner two Ioops go through every
edge once, ordered by the vertices

.< n]

FOR num_edges IN [1 .

len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len
min_len = len
lens[num_edges, v] = min(lens[num_edges - 1, v], min_len)

O(n%) < O(mn)< O(n3) O(m?)
—__E(\ @%ﬁm\ 46



FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len

min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4 IIIIIIIIIIIIIIIIIIIIIIIIIIII
What about 3 0 7 3 4 6
negative edges? i ) 0 2 3 4
\ﬁgis ‘ér \,JUT¥5? é\ 1 0 2 4 oo oo
ceso 0 o e e e
\fo(ﬂﬁﬂﬁzl x%;;; (o s a b C d
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What is the maximum
number of edges on any

real (not negative infinity)
shortest path?

48



10

What is the maximum

number of edges on any

real (not negative infinity)
path?

Any additional edges will
increase the path length,
or otherwise must be part
of a negative cycle

49



Exercise



What is the shortest
path from S to B?

Initialization

C

Table is rotated when compared to previous example
(easier to fit on the slide) 51




What is the shortest
path from S to B?

Initialization

N : -

None ©o

Table is rotated when compared to previous example
(easier to fit on the slide) 52



What is the shortest
path from S to B?

N : -

None ©o

Table is rotated when compared to previous example
(easier to fit on the slide) 53



What is the shortest
path from S to B?

no
incoming

None

edges
C None co
None 0o
None ©o

Table is rotated when compared to previous example
(easier to fit on the slide) 54



What is the shortest
path from S to B?

v | prdesor| 1|1
S S 0 0

B S o 5

C None co

Table is rotated when compared to previous example
(easier to fit on the slide) 55




What is the shortest
path from S to B?

“ :
o 5
oo 7
None co
“ None oo

Table is rotated when compared to previous example
(easier to fit on the slide) 56



What is the shortest
path from S to B?

s B
oo 7
None o oo
None o

Table is rotated when compared to previous example
(easier to fit on the slide) 57



What is the shortest
path from S to B?

Table is rotated when compared to previous example
(easier to fit on the slide) 58



What is the shortest
path from S to B?

S co €& §
S oo & 7
None o € oo
None oo € oo

Table is rotated when compared to previous example
(easier to fit on the slide) 59



What is the shortest
path from S to B?

Table is rotated when compared to previous example
(easier to fit on the slide) 60



What is the shortest
path from S to B?

Table is rotated when compared to previous example
(easier to fit on the slide) 61



What is the shortest
path from S to B?

Table is rotated when compared to previous example
(easier to fit on the slide) 62



What is the shortest
path from S to B?

E 6 € 4

B 1 €1

Table is rotated when compared to previous example
(easier to fit on the slide) 63



What is the shortest
path from S to B?

»w O O!m

C

N 0 O
9 W O

BN

Table is rotated when compared to previous example
(easier to fit on the slide) 64




What is the shortest
path from S to B?

E 4 € 4

B 1 €1

Table is rotated when compared to previous example
(easier to fit on the slide) 65



What is the shortest
path from S to B?

Last iteration is only to detect negative cycles.

i=5

0
3
7
4

Table is rotated when compared to previous example
(easier to fit on the slide) 66



Summary of Bellman-Ford

* Single-source shortest path problem (like Dijkstra’s)
* Running time is O(nm)
* Works with negative weights

e Can detect negative cycles

 Run the loop n times and if a path length goes down, then you’ve found a
negative cycle
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