

Bellman-Ford Algorithm For Solving the Single Source Shortest Path Problem

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

Discuss and analyze the Bellman-Ford Algorithm

Exercise

Bellman-Ford Walk-through

Dynamic Programming

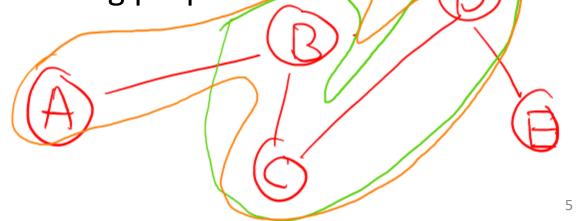
An algorithm design technique/paradigm that typically takes one of the following forms:

Top-Down (memoization—cache results and use recursion)

Bottom-Up (tabulation—store results in a table)

Used to solve problems with the following properties:

- Overlapping subproblems and
- Optimal substructure



The Bellman-Ford Algorithm

Key Idea: leverage overlapping subproblems and optimal substructure.

A dynamic programming solution to the Single-Source Shortest Path problem (same problem solved by Dijkstra's)

Input:

- a weighted graph G = (V, E) where each edge has a length c_e and
- a source vertex s

Output:

- The length of the shortest path from s to all other vertices, or
- We output that we detected a negative cycle (invalid path lengths)

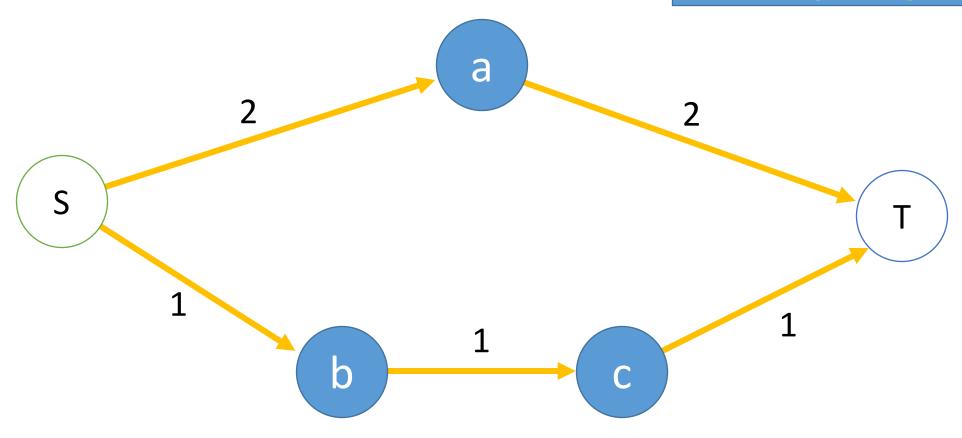
Question

	Sparse Graphs	Dense Graphs
Dijkstra's n times	O(n ² lg n)	O(n ³ lg n)
Bellman-Ford n times	O(n ³)	O(n ⁴)
Floyd-Warshall	O(n ³)	O(n ³)

• What algorithm would you choose for sparse graphs?

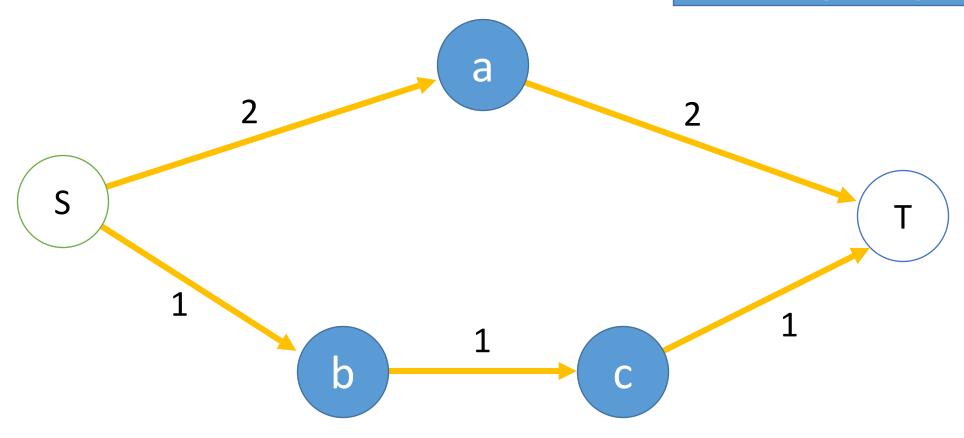
- Dijkstra's n times if there are no negative edges, Floyd Warshalhotherwise
- What algorithm would you choose for dense graphs?
 - Always Floyd-Warshall

What is the shortest path from S to T using 0 edges?

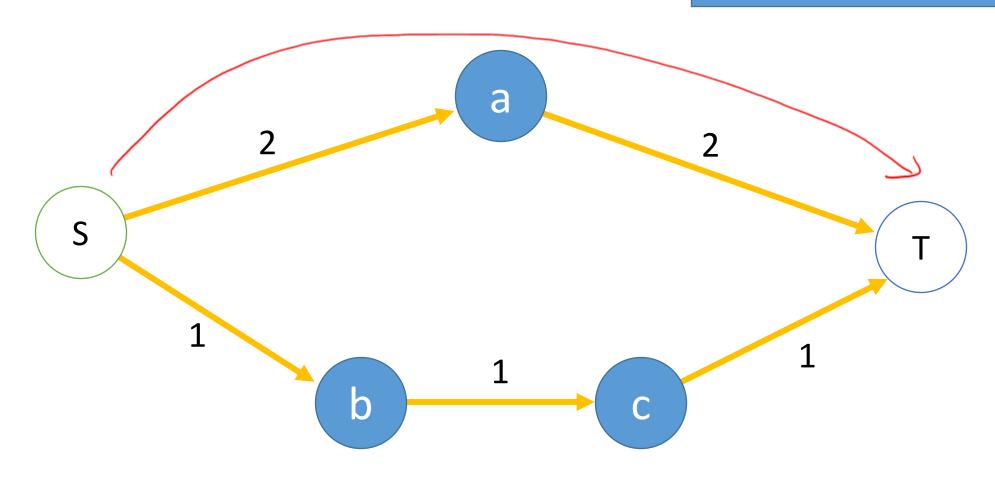


Subproblem: consider only a subset of the possible paths.

What is the shortest path from S to T using 1 edge?

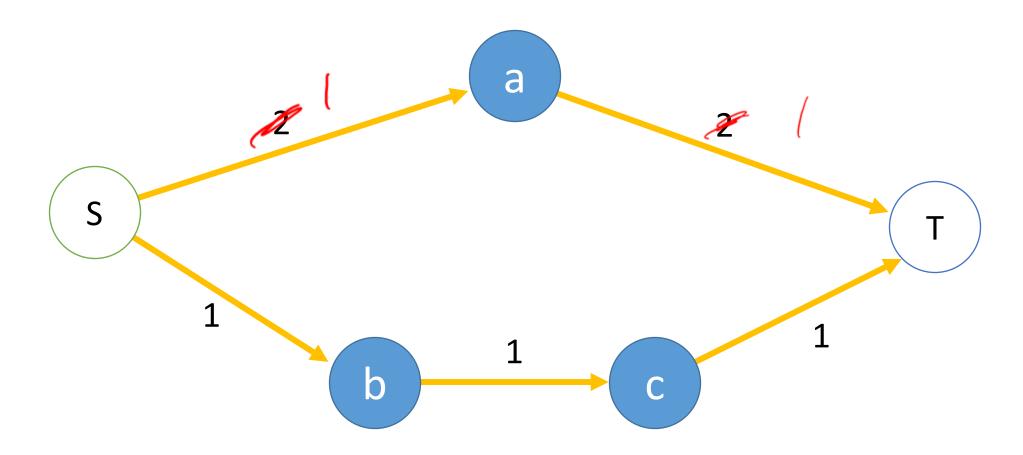


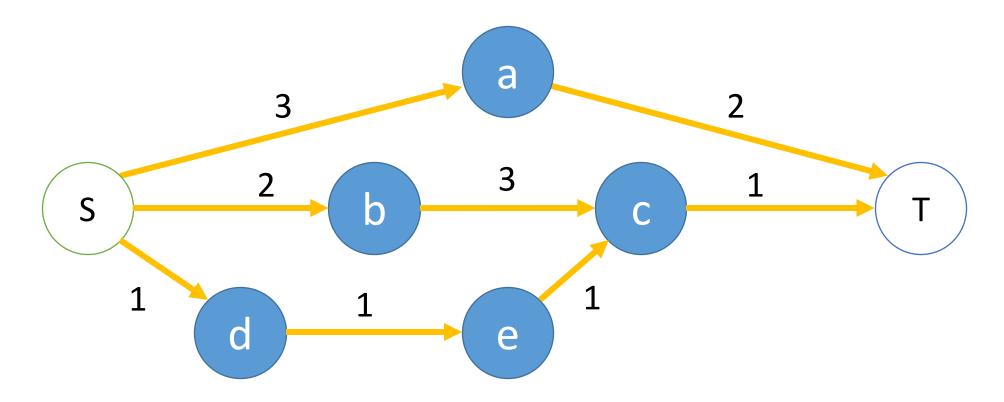
What is the shortest path using 2 edges?



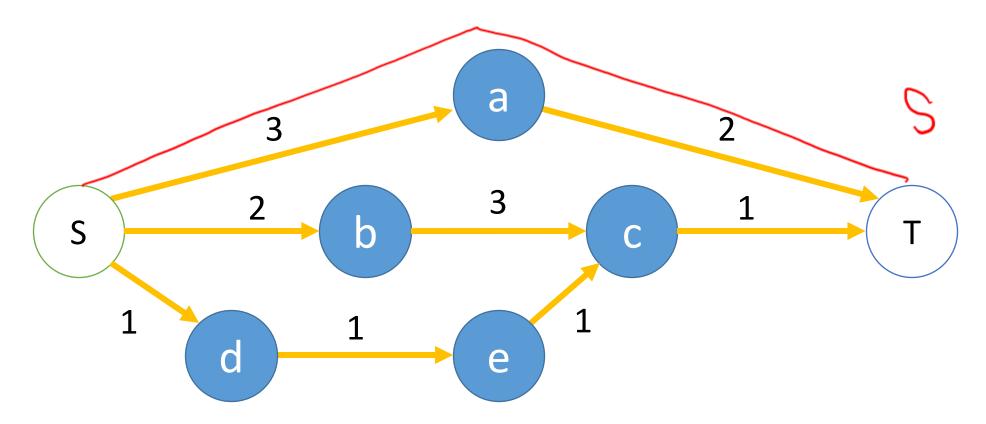
What is the shortest path using 3 edges?

What is the shortest path using 2 edges?

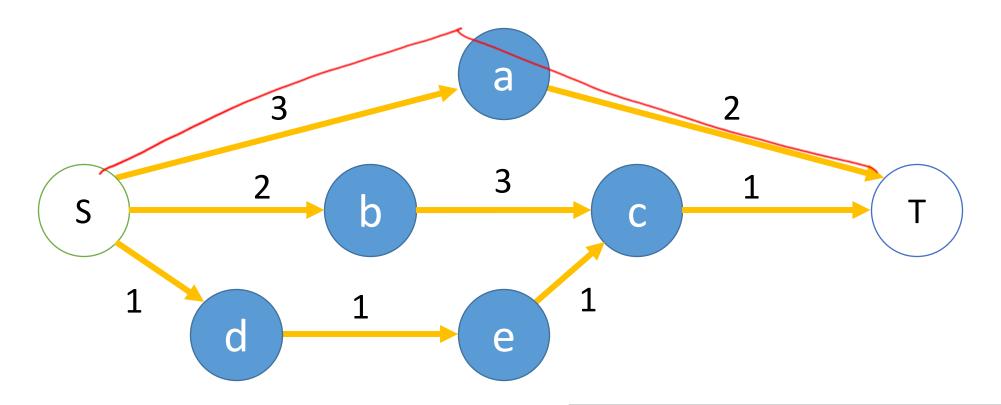




What is the shortest path with at most 1 edge?

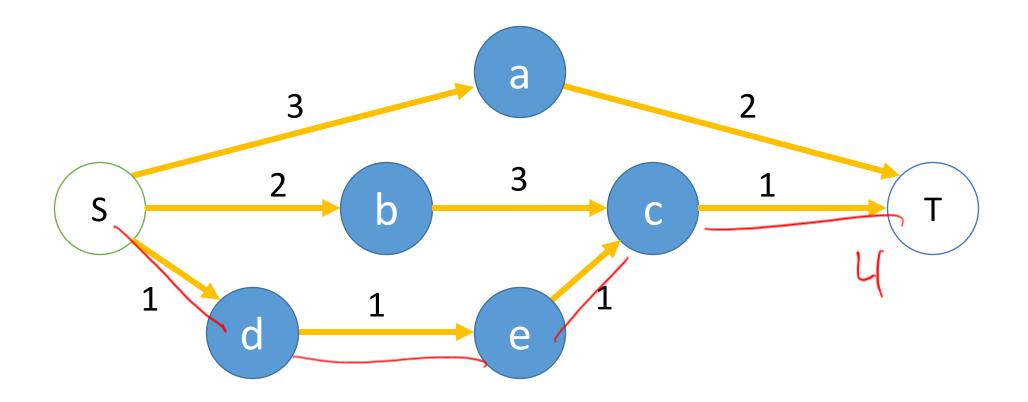


Shortest path with at most 2 edges



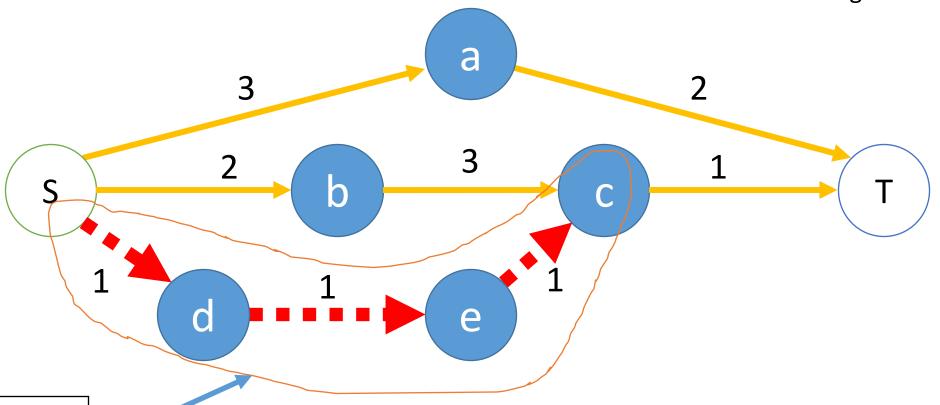
Shortest path with <u>at most</u> 2 edges

Shortest path with at most 3 edges



Shortest path with <u>at most</u> 4 edges

If the path is the shortest path from S to T using at most 4 edges, then the red dashed line must be the shortest path from S to C using at most 3 edges.

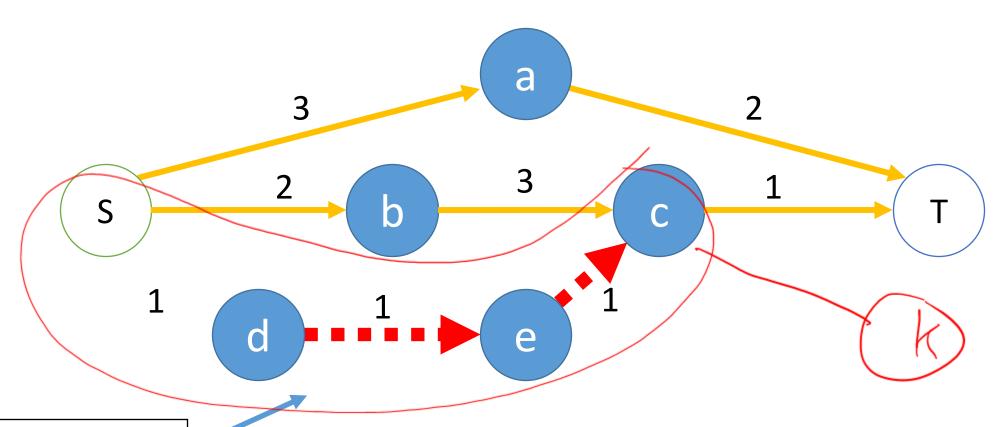


Optimal Substructure

This must be shortest path from <u>S</u> to <u>C</u> with <u>at most</u> 3 edges!

Shortest path with <u>at most</u> 4 edges

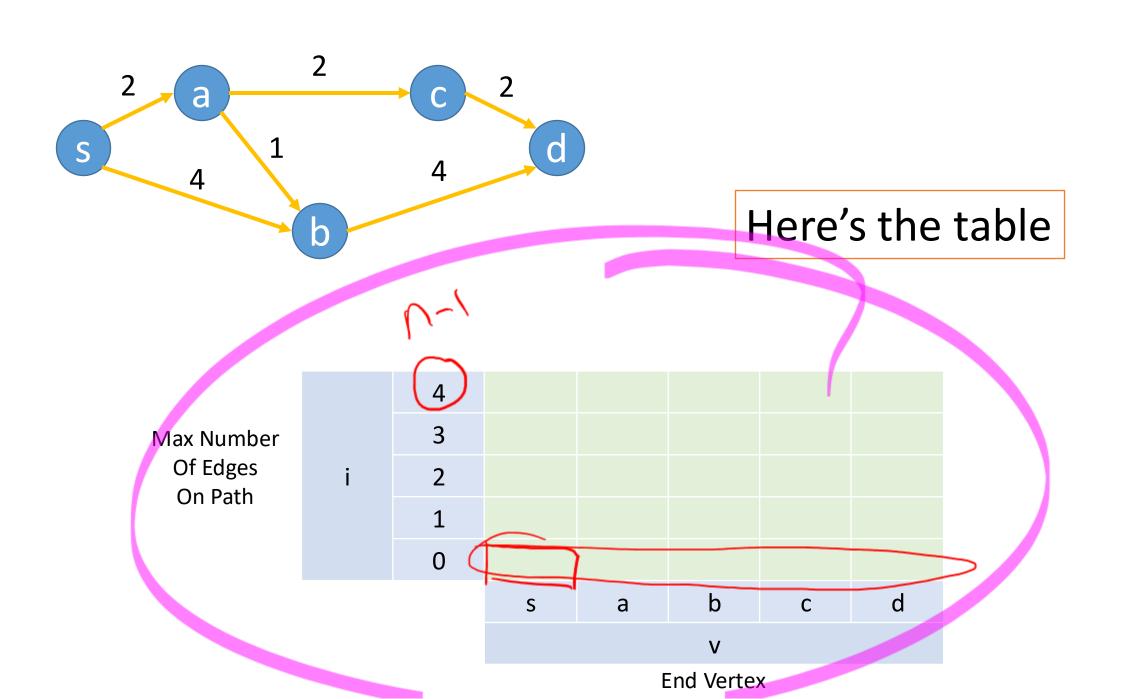
The path from \underline{D} to \underline{C} is used as part of the shortest path from \underline{S} to \underline{T} . And as part of the shortest path from \underline{S} to \underline{C} .



Overlapping Subproblems

The path from D to C is used as part of the shortest path from S to T and from D to T (and ...)

Shortest path with <u>at most</u> 4 edges



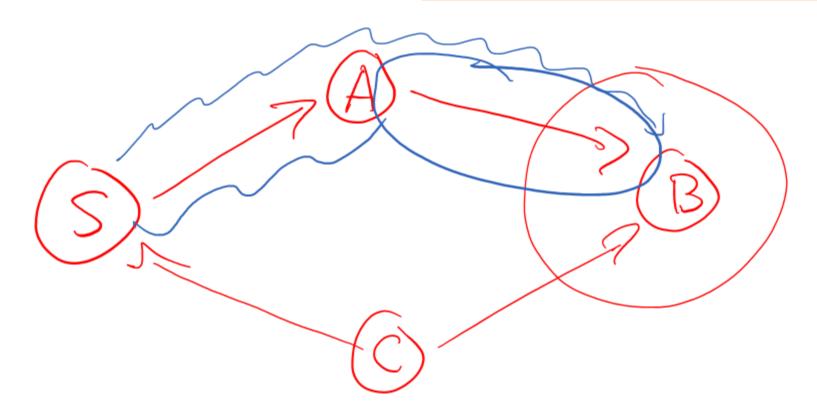
```
FUNCTION BellmanFord(G, start_vertex)

n = G.vertices.length

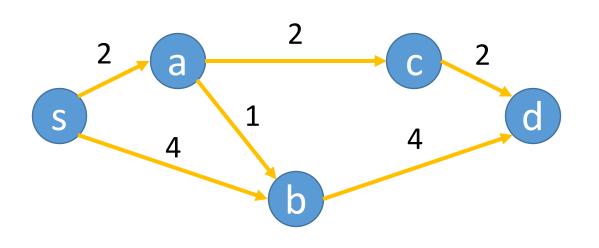
path_lengths = [[INFINITY FOR v IN G.vertices] FOR _ IN [0 ...< n]]

path_lengths[0, start_vertex] = 0</pre>
```

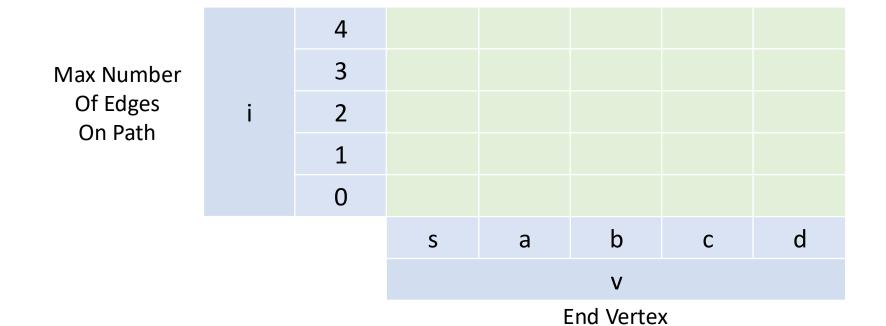
FUNCTION BellmanFord(G, start_vertex) n = G.vertices.length path_lengths = [[INFINITY FOR v IN G.vertices] FOR _ IN [0 ...< n]] path_lengths[0, start_vertex] = 0 FOR num_edges IN [1 ...< n] Why won't we need more than n-1 edges?</pre>

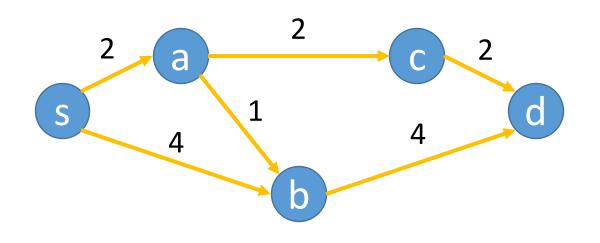


```
FUNCTION BellmanFord(G, start vertex)
   n = G.vertices.length
   path_lengths = [[INFINITY FOR v IN G.vertices] FOR __IN [0 ... < n]]
   path_lengths[0, start_vertex] = 0
   FOR num_edges IN [1 ...< n] Why won't we need more than n-1 edges?
      FOR v IN G. vertices
         min len = INFINITY
                               All incoming edges into v
         FOR (vFrom, v) IN G.edges
                                        Cost to get to vFrom using at most i-1 edges
            len = path_lengths[num_edges - 1, vFrom] + G.edges[vFrom, v].cost
            IF len < min_len</pre>
               min len = len
                                                     Cost using at most num_edges-1 edges
         path_lengths[num_edges, v] = min path_lengths[num_edges - 1, v],
```



```
FOR num_edges IN [1 ..< n]
   FOR v IN G.vertices
        min_len = INFINITY
   FOR (vFrom, v) IN G.edges
        len = lens[num_edges - 1, vFrom] + c
        IF len < min_len
            min_len = len
        lens[num_edges, v] = min(
        lens[num_edges - 1, v], min_len)</pre>
```





```
FOR num_edges IN [1 ...
FOR v IN G.vertices

min_len = INFINITY

FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + c

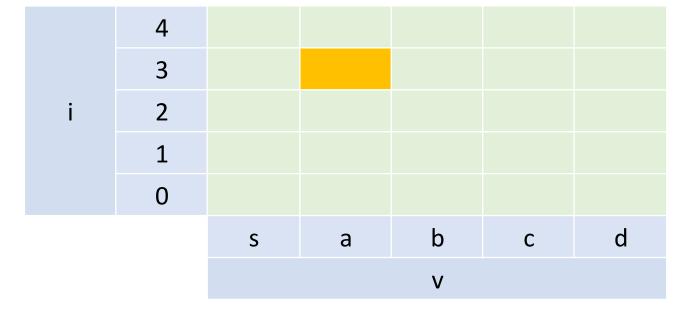
IF len < min_len

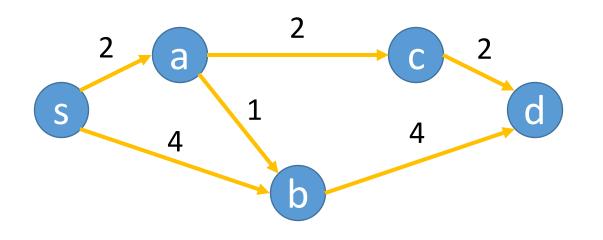
min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
```

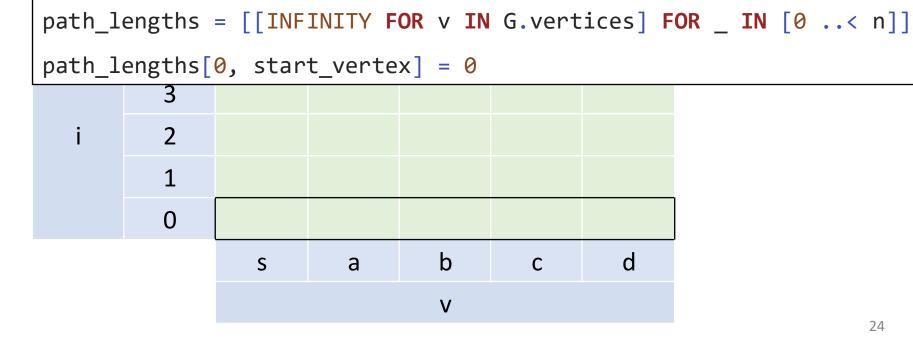
What does a single cell denote?

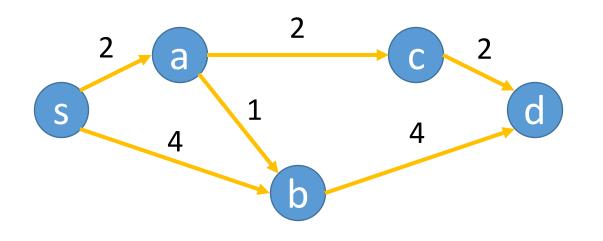




```
FOR num_edges IN [1 ...< n]
   FOR v IN G. vertices
      min_len = INFINITY
      FOR (vFrom, v) IN G.edges
         len = lens[num_edges - 1, vFrom] + c
         IF len < min_len</pre>
            min_len = len
      lens[num_edges, v] = min(
         lens[num_edges - 1, v], min_len)
```

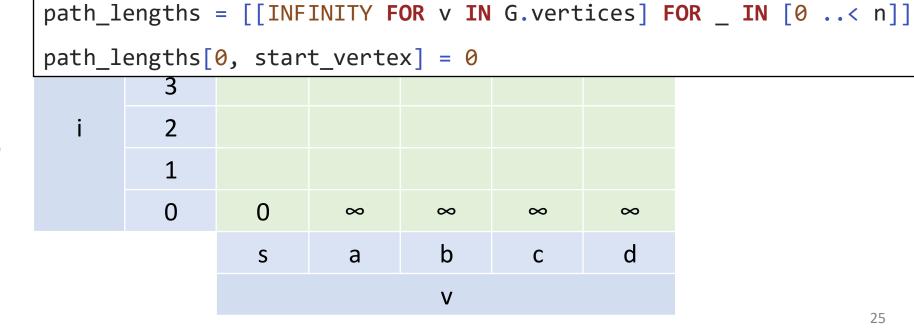
Initialize first row Lengths of paths from s to all other vertices using zero edges

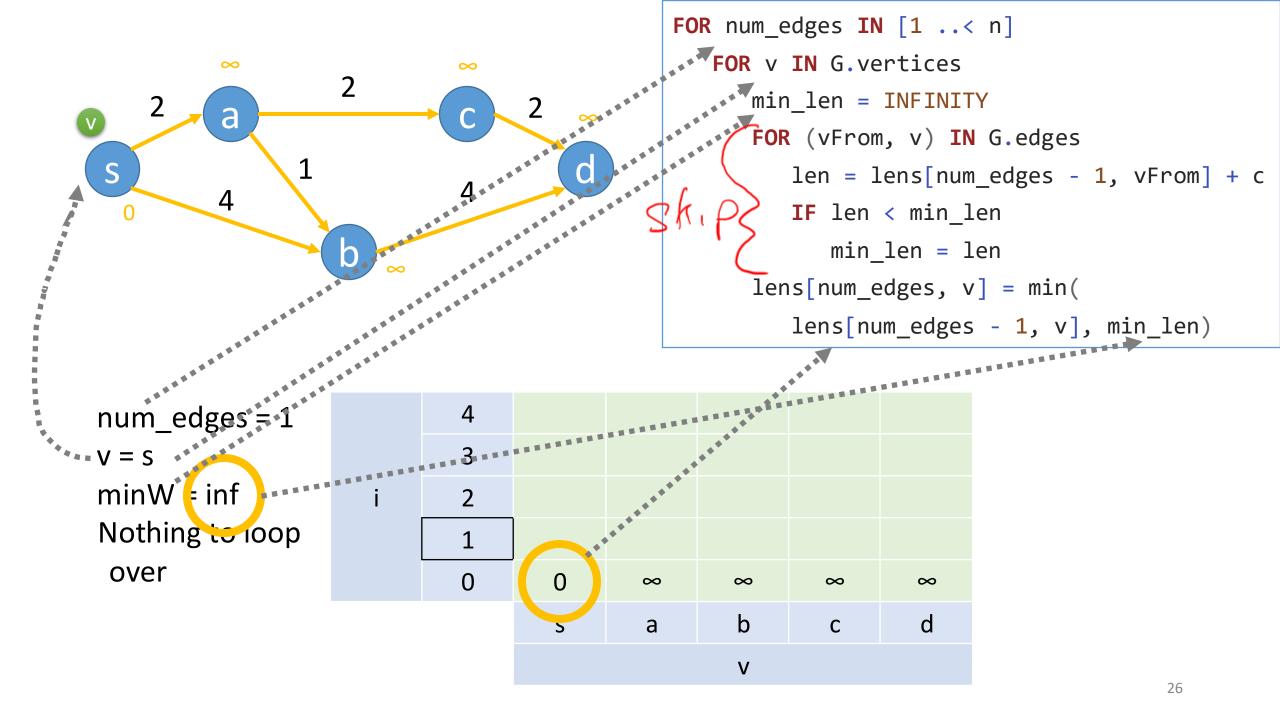


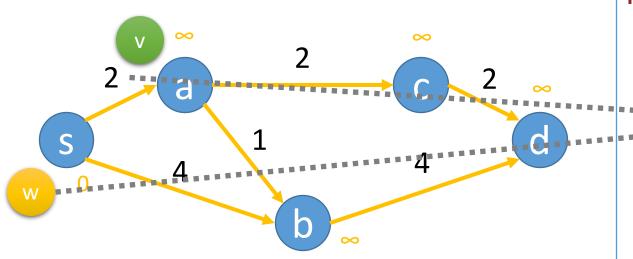


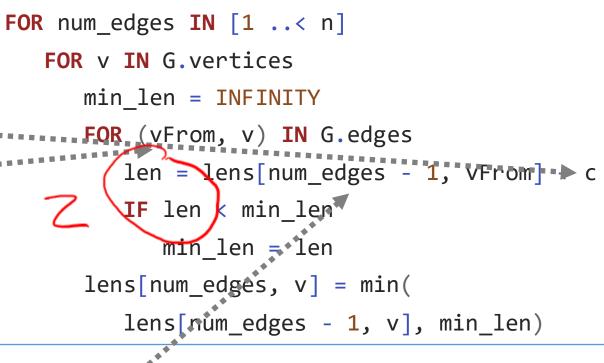
```
FOR num_edges IN [1 ...< n]
   FOR v IN G. vertices
      min_len = INFINITY
      FOR (vFrom, v) IN G.edges
         len = lens[num_edges - 1, vFrom] + c
         IF len < min_len</pre>
            min_len = len
      lens[num_edges, v] = min(
         lens[num_edges - 1, v], min_len)
```

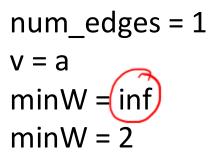
Initialize first row Lengths of paths from s to all other vertices using zero edges

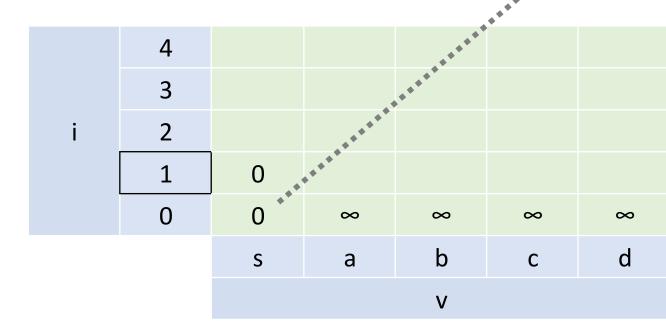


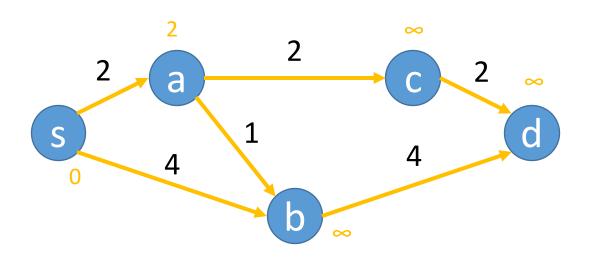












```
FOR num_edges IN [1 ...
FOR v IN G.vertices

min_len = INFINITY

FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + c

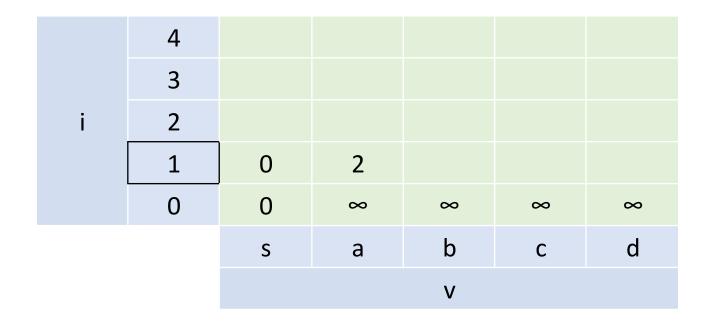
IF len < min_len

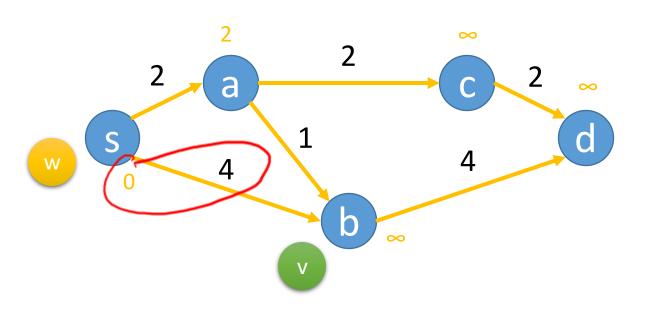
min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
```

num_edges = 1
v = a
minW = inf
minW = 2





```
FOR num_edges IN [1 ...
FOR v IN G.vertices

min_len = INFINITY

FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + c

IF len < min_len

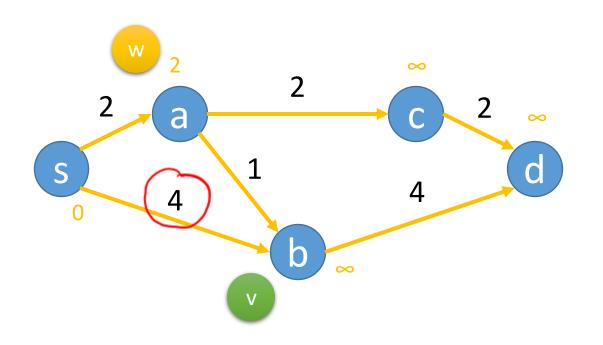
min_len = len

lens[num_edges, v] = min(

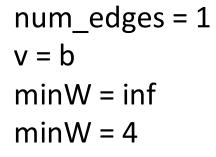
lens[num_edges - 1, v], min_len)
```

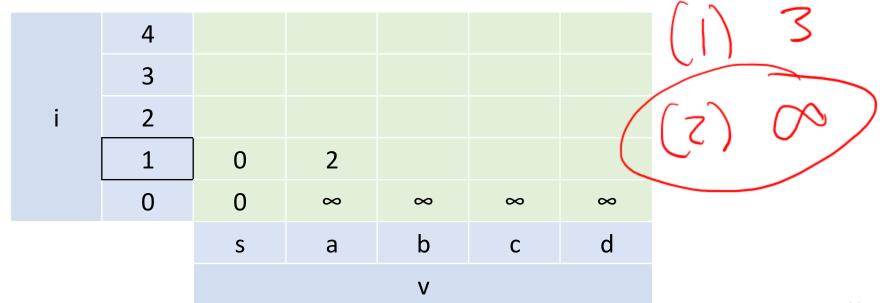
num_edges = 1
v = b
minW = inf
minW = 4

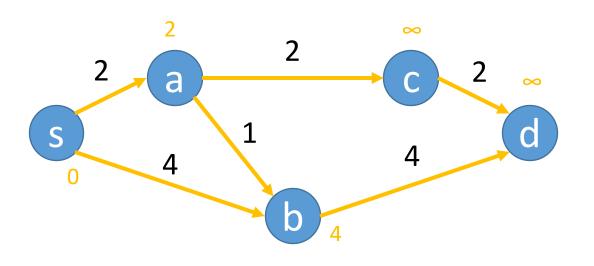
	4					
	3					
i	2					
	1	0	2			
	0	0	∞	∞	∞	∞
		S	а	b	С	d
				V		



```
FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + c
IF len < min_len
min_len = len
lens[num_edges, v] = min(
lens[num_edges - 1, v], min_len)</pre>
```



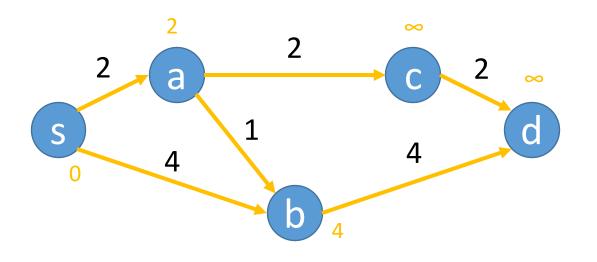




```
FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + c
IF len < min_len
min_len = len
lens[num_edges, v] = min(
lens[num_edges - 1, v], min_len)</pre>
```

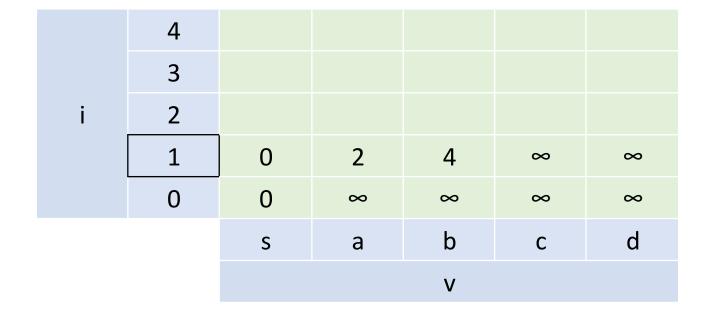
```
num_edges = 1
v = b
minW = inf
minW = 4
```

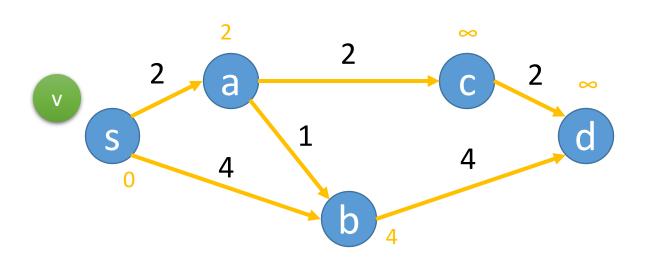
	4					
	3					
i	2					
	1	0	2	4		
	0	0	∞	∞	∞	∞
		S	а	b	С	d
				V		



```
FOR num_edges IN [1 ..< n]
   FOR v IN G.vertices
      min_len = INFINITY
   FOR (vFrom, v) IN G.edges
      len = lens[num_edges - 1, vFrom] + c
      IF len < min_len
            min_len = len
      lens[num_edges, v] = min(
            lens[num_edges - 1, v], min_len)</pre>
```

There are not any paths of length 1 from s to c or d





```
FOR num_edges IN [1 ...
FOR v IN G.vertices

min_len = INFINITY

FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + c

IF len < min_len

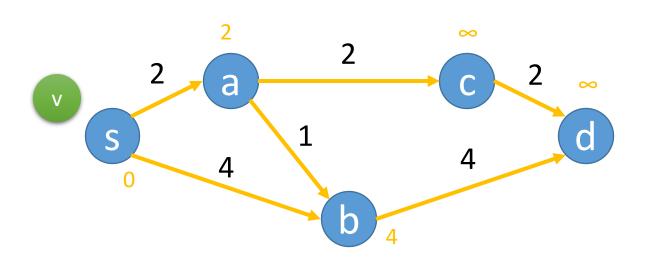
min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
```

num_edges = 2
v = s
minW = inf

	4					
	3					
i	2					
	1	0	2	4	∞	∞
	0	0	∞	∞	∞	∞
		S	а	b	С	d
				V		



```
FOR num_edges IN [1 ...
FOR v IN G.vertices

min_len = INFINITY

FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + c

IF len < min_len

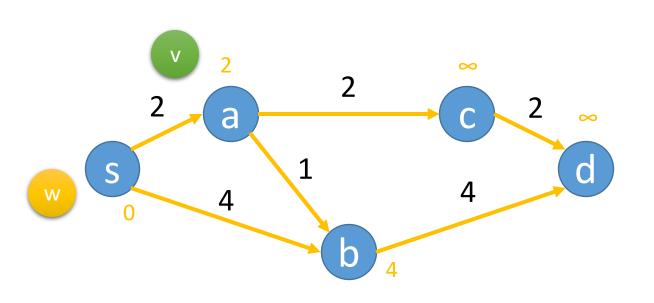
min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
```

num_edges = 2
v = s
minW = inf

	4					
	3					
i	2	0				
	1	0	2	4	∞	∞
	0	0	∞	∞	∞	∞
		S	a	b	С	d
				V		



```
FOR num_edges IN [1 ...
FOR v IN G.vertices

min_len = INFINITY

FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + c

IF len < min_len

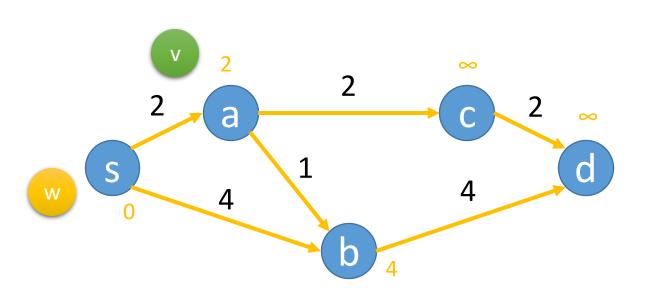
min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
```

num_edges = 2
v = a
minW = inf
minW = 2

	4					
	3					
i	2	0				
	1	0	2	4	∞	∞
	0	0	∞	∞	∞	∞
		S	а	b	С	d
				V		



```
FOR num_edges IN [1 ...
FOR v IN G.vertices

min_len = INFINITY

FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + c

IF len < min_len

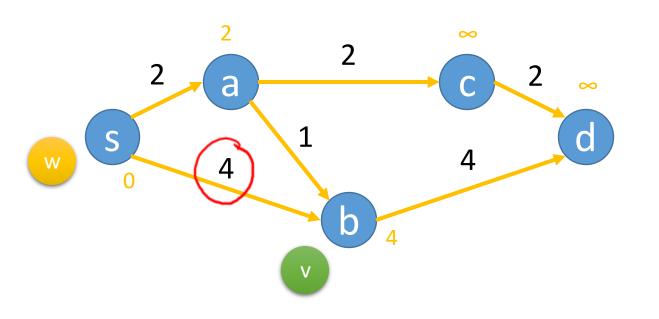
min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
```

num_edges = 2
v = a
minW = inf
minW = 2

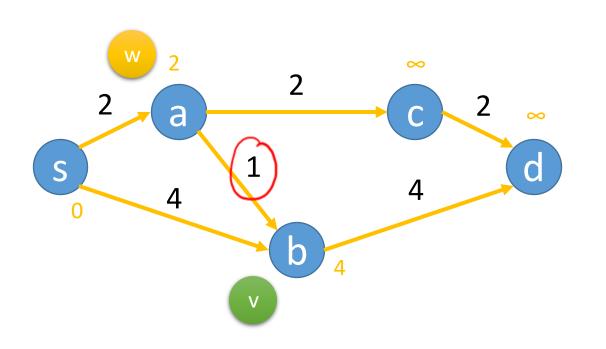
	4					
	3					
i	2	0	2			
	1	0	2	4	∞	∞
	0	0	∞	∞	∞	∞
		S	a	b	С	d
				V		



```
FOR num_edges IN [1 ...< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + c
IF len < min_len
min_len = len
lens[num_edges, v] = min(
lens[num_edges - 1, v], min_len)</pre>
```

num_edges = 2 v = b minW = inf minW = 4

	4					
	3					
i	2	0	2			
	1	0	2	4	∞	∞
	0	0	∞	∞	∞	∞
		S	а	b	С	d
				V		



```
FOR num_edges IN [1 ...
FOR v IN G.vertices

min_len = INFINITY

FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + c

IF len < min_len

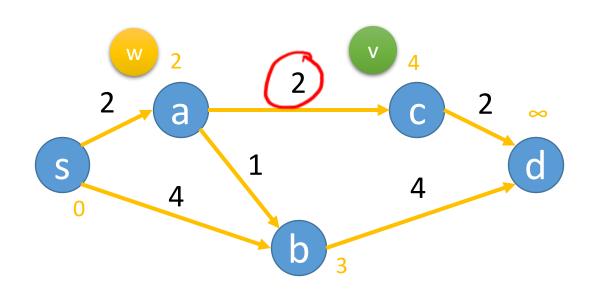
min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
```

```
num_edges = 2
v = b
minW = inf
minW = 4
minW = 3
```

	4					
	3					
i	2	0	2			
	1	0	(2)	4	∞	∞
	0	0	∞	∞	∞	∞
		S	а	b	С	d
				V		



```
FOR num_edges IN [1 ...
FOR v IN G.vertices

min_len = INFINITY

FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + c

IF len < min_len

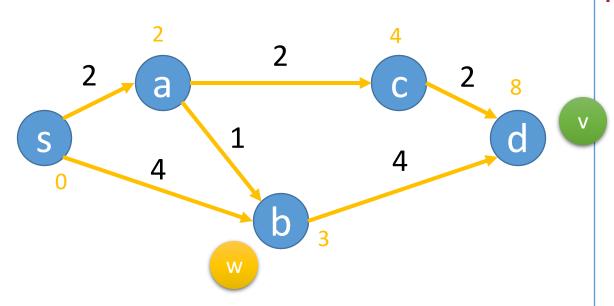
min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
```

```
num_edges = 2
v = c
minW = inf
minW = 4
```

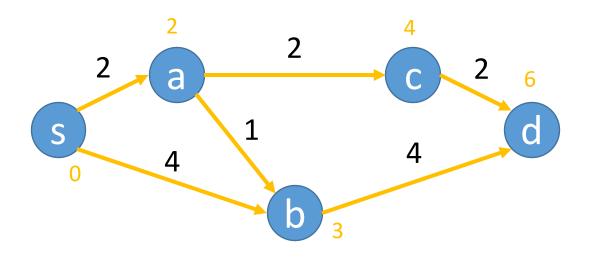
	4					
	3					
i	2	0	2	3	4	
	1	0	(2)	4	∞	∞
	0	0	∞	∞	∞	∞
		S	а	b	С	d
				V		



```
FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + c
IF len < min_len
min_len = len
lens[num_edges, v] = min(
lens[num_edges - 1, v], min_len)</pre>
```

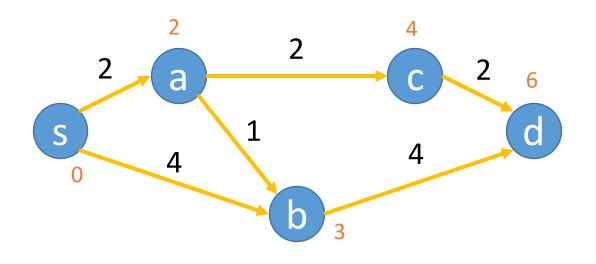
num_edges = 2
v = d
minW = inf
minW = 8

	4					
	3					
i	2	0	2	3	4	8
	1	0	2	4	∞	∞
	0	0	∞	∞	∞	∞
		S	a	b	С	d
				V		



```
FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + c
IF len < min_len
min_len = len
lens[num_edges, v] = min(
lens[num_edges - 1, v], min_len)</pre>
```

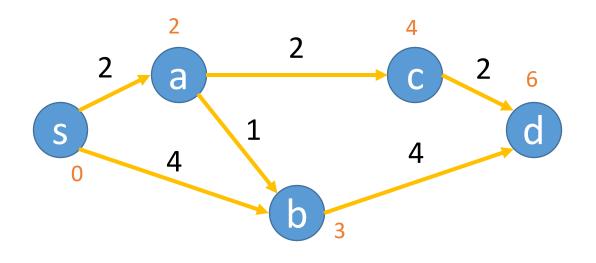
	4	0	2	3	4	-6/
	3	0	2	3	4	6
i	2	0	2	3	4	8
	1	_0	2	4	∞	∞
	0	0	∞	∞	∞	∞
		S	а	b	С	d
				V		



```
FOR num_edges IN [1 ..< n]
   FOR v IN G.vertices
      min_len = INFINITY
   FOR (vFrom, v) IN G.edges
      len = lens[num_edges - 1, vFrom] + c
      IF len < min_len
            min_len = len
      lens[num_edges, v] = min(
            lens[num_edges - 1, v], min_len)</pre>
```

We output the shortest paths from s to all other vertices

6.
6
8
×
×
d



```
FOR num_edges IN [1 ...
FOR v IN G.vertices

min_len = INFINITY

FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + c

IF len < min_len

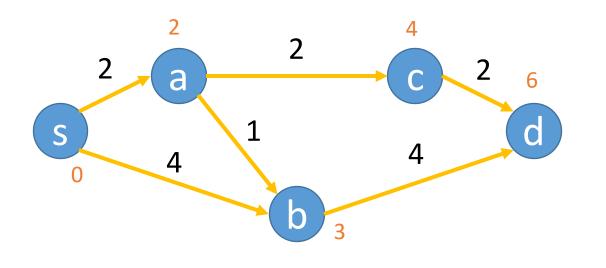
min_len = len

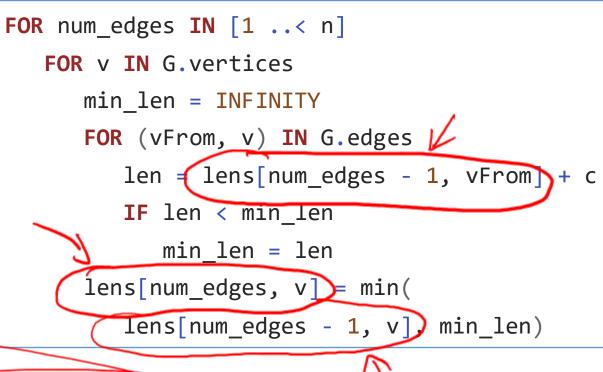
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
```

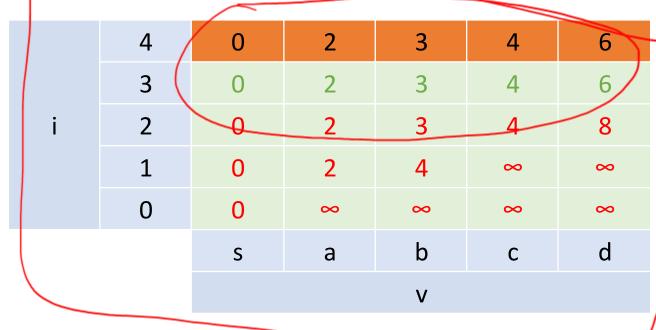
Do we need the other rows of the table?

	4	0	2	3	4	6
	3	0	2	3	4	6
i	2	0	2	3	4	8
	1	0	2	4	∞	∞
	0	0	∞	∞	∞	∞
		S	а	b	С	d
				V		





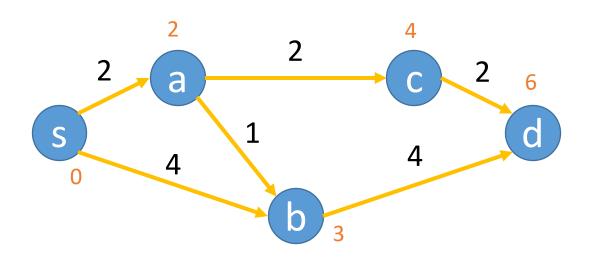
Do we need the other rows of the table?



Running Time of Bellman-Ford Algorithm?

```
FOR num_edges IN [1 ...< n]</pre>
   FOR v IN G vertices
      min_len = INFINITY
      FOR (vFrom, v) IN G.edges
                                                       The inner two loops go through every
                                                       edge once, ordered by the vertices
          len = lens[num_edges - 1, vFrom] + c
          IF len < min_len</pre>
             min_len = len
       lens[num_edges, v] = min(lens[num_edges - 1, v], min_len)
```

$$O(n^2) \subset O(mn) \subset O(n^3)$$
 $O(m^2)$



```
FOR num_edges IN [1 ...
FOR v IN G.vertices

min_len = INFINITY

FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + c

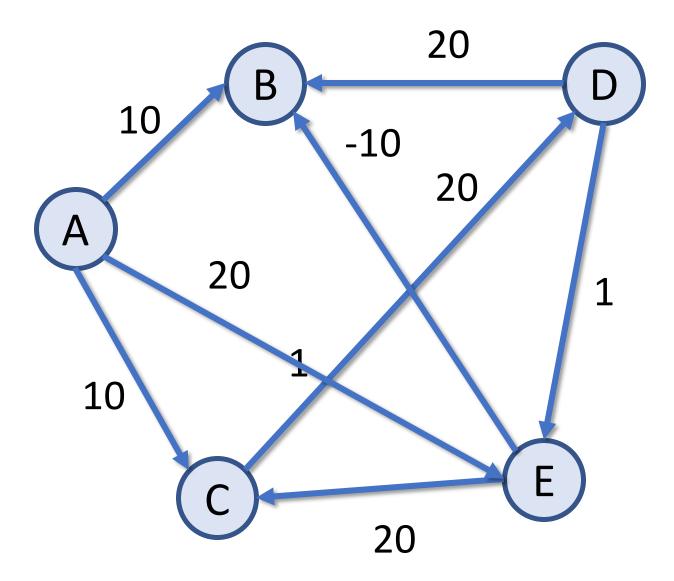
IF len < min_len

min_len = len

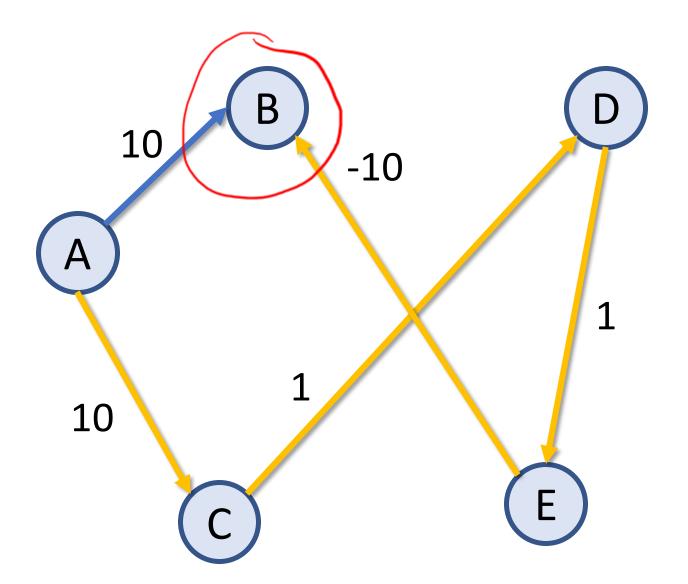
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
```

		4	0	2	3	4	6
What about		3	0	2	3	4	6
negative edges?	, i	2	0	2	3	4	8
Ves H Warr	¥	1	0	2	4	∞	∞
Rt CC	wcige	2/50	0	∞	∞	∞	∞
because 1st a	J		S	a	b	С	d
SULD DULL					V		



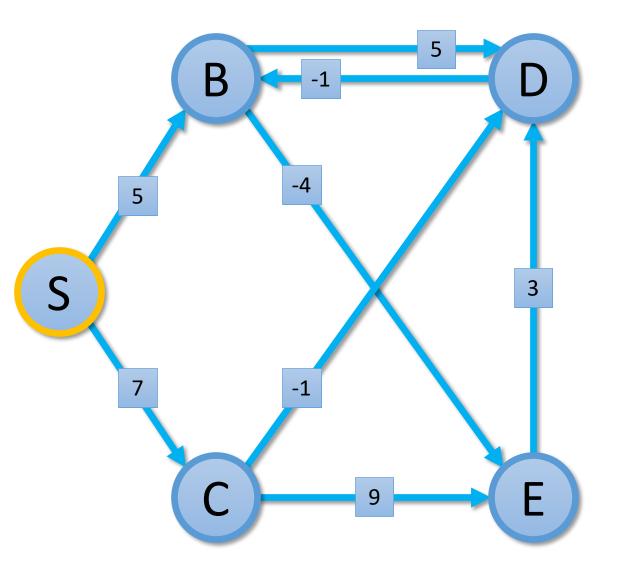
What is the maximum number of edges on any real (not negative infinity) shortest path?



What is the maximum number of edges on any real (not negative infinity) shortest path?

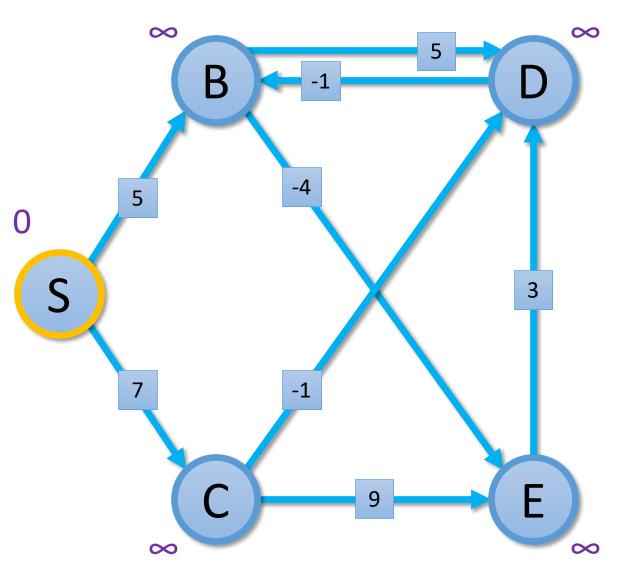
Any additional edges will increase the path length, or otherwise must be part of a negative cycle

Exercise



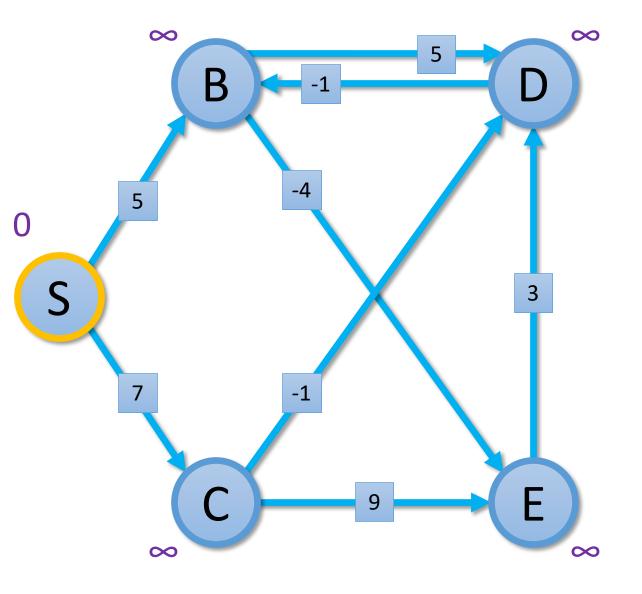
Initialization

Vertex	Predecessor	i – 1	i
S			
В			
С			
D			
E			



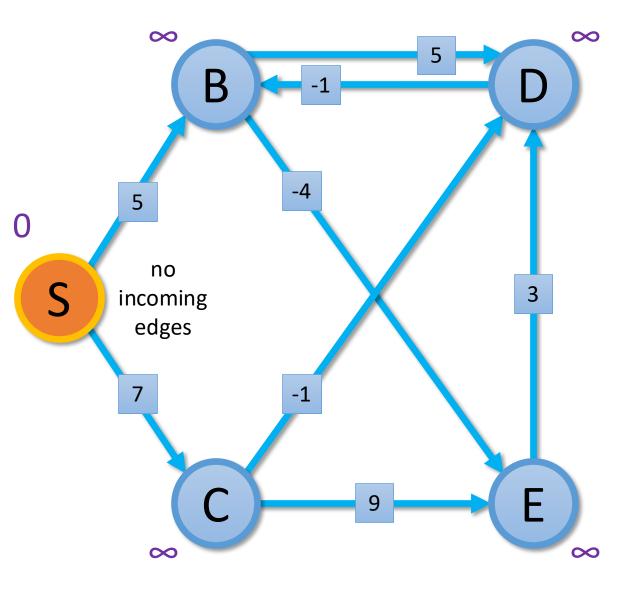
Initialization

Vertex	Predecessor	i – 1	i
S	S	0	
В	None	∞	
С	None	∞	
D	None	∞	
Е	None	∞	



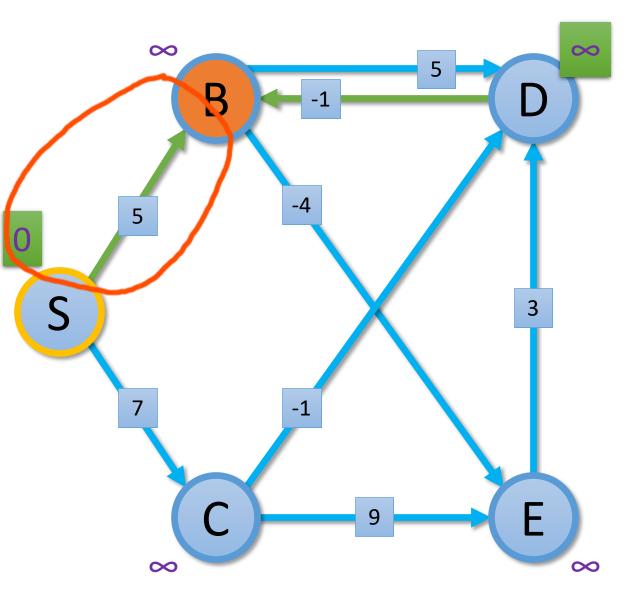
i = 1

Vertex	Predecessor	i – 1	i
S	S	0	
В	None	∞	
С	None	∞	
D	None	∞	
Е	None	∞	



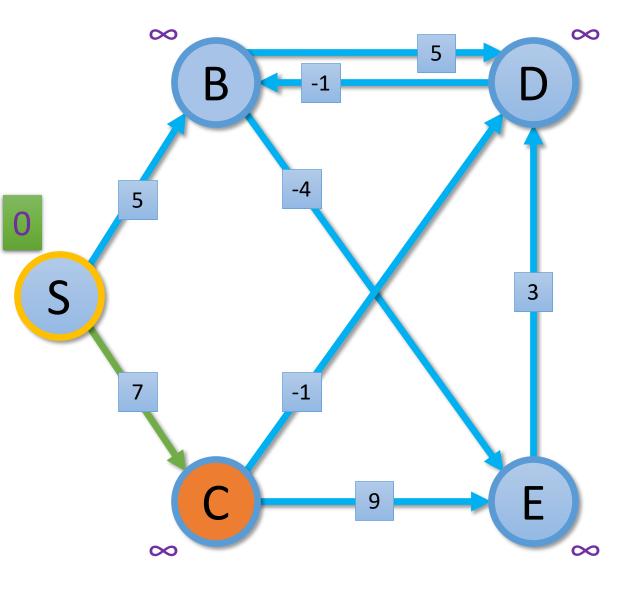
i = 1

Vertex	Predecessor	i – 1	i
S	S	0	0
В	None	∞	
С	None	∞	
D	None	∞	
Е	None	∞	



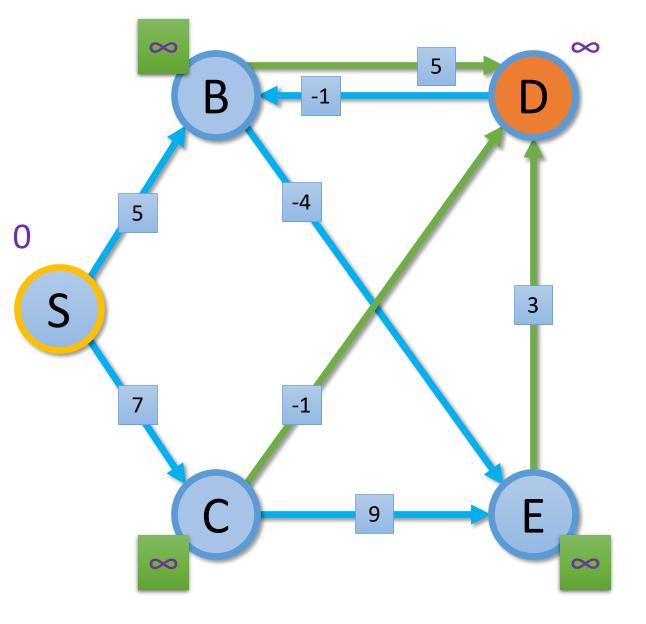
i = 1

Vertex	Predecessor	i – 1	i
S	S	0	0
В	S	∞	5
С	None	∞	
D	None	∞	
Е	None	∞	



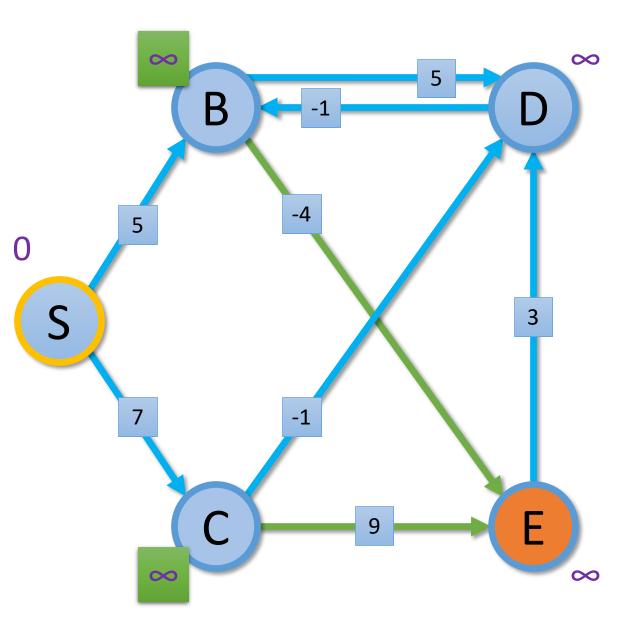
i = 1

Vertex	Predecessor	i – 1	i
S	S	0	0
В	S	∞	5
С	S	∞	7
D	None	∞	
Е	None	∞	



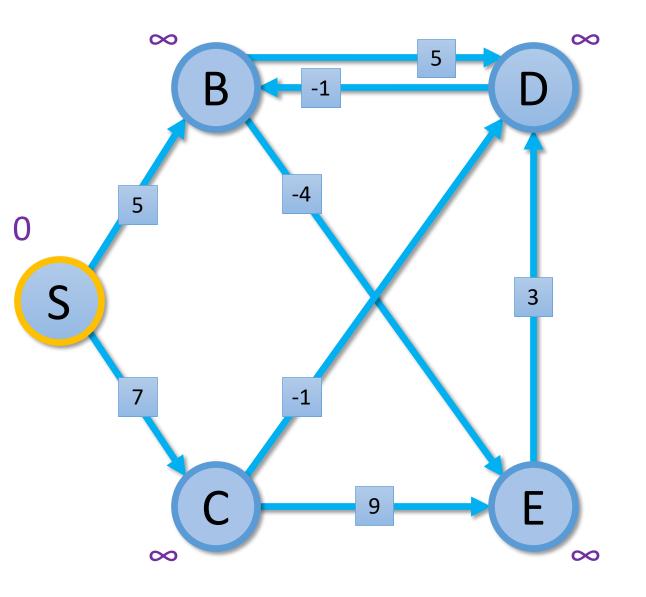
i = 1

Vertex	Predecessor	i – 1	i
S	S	0	0
В	S	∞	5
С	S	∞	7
D	None	∞	∞
Е	None	∞	

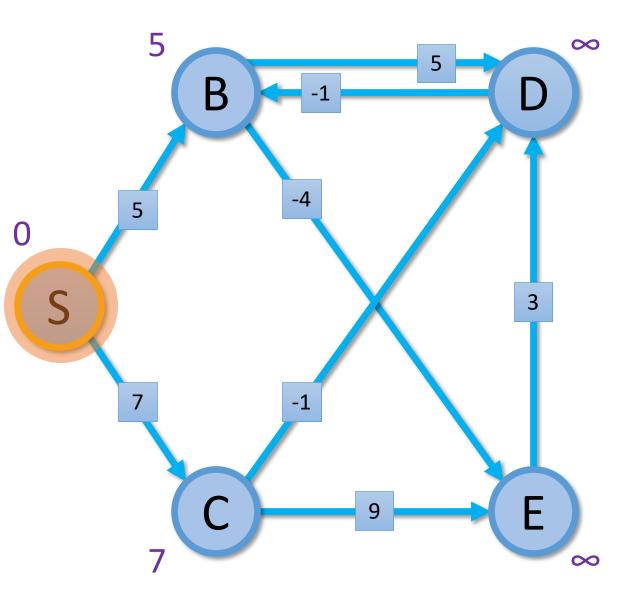


i = 1

Vertex	Predecessor	i – 1	i
S	S	0	0
В	S	∞	5
С	S	∞	7
D	None	∞	∞
E	None	∞	∞

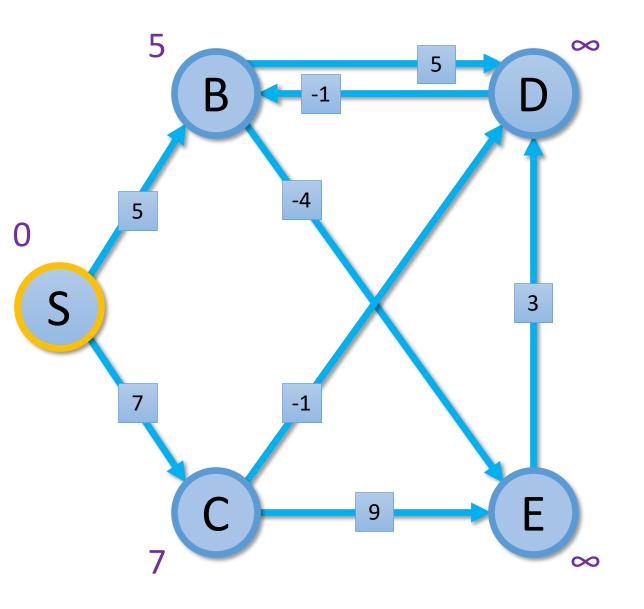


Vertex	Predecessor	i – 1	i
S	S	0 ←	- 0
В	S	∞ ←	- 5
С	S	∞ ←	7
D	None	∞ ←	─ ∞
Ε	None	∞ ←	_ ∞

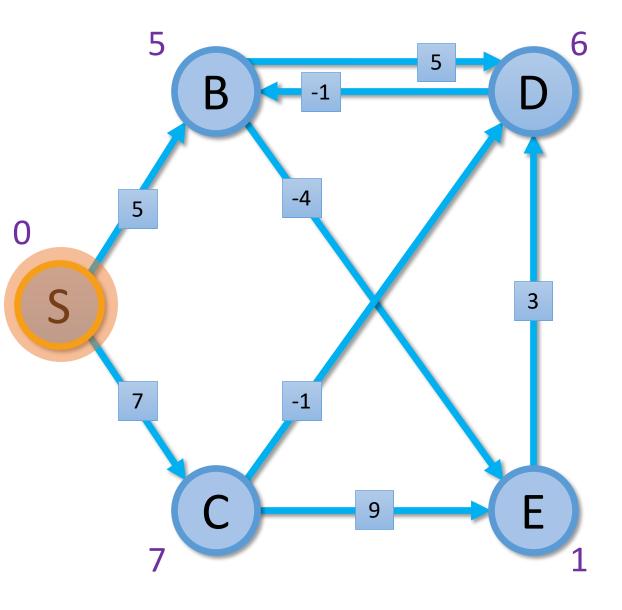


i = 2

Vertex	Predecessor	i – 1	i
S	S	0	0
В	S	5	5
С	S	7	7
D	С	∞	6
Ε	В	∞	1

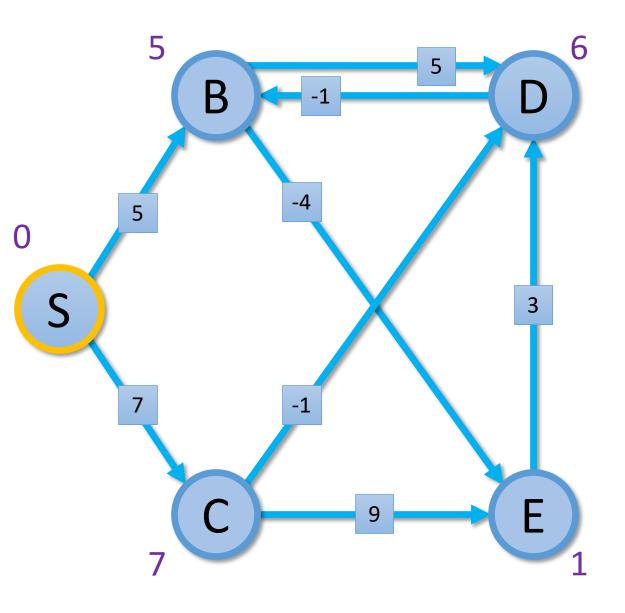


Predecessor	i – 1	i
S	0 ←	– 0
S	5 ←	_ 5
S	7 ←	7
С	∞ ←	6
В	∞ ←	— 1
	S S S C	S 0 ← S 5 ← S 7 ← C ∞ ←

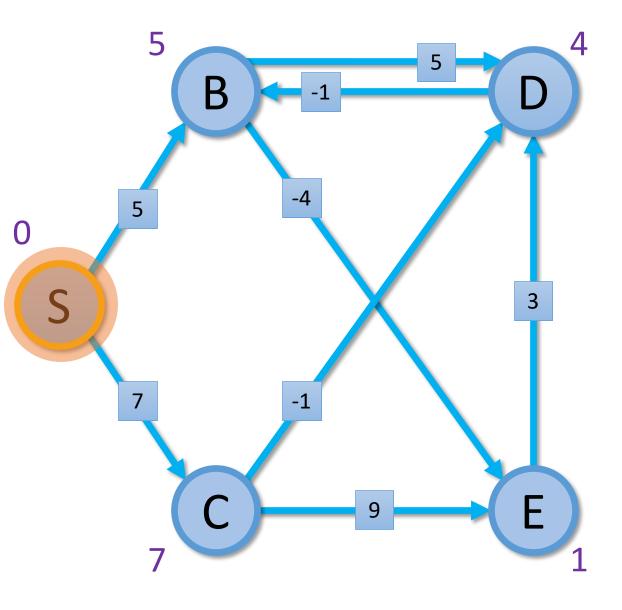


i = 3

Vertex	Predecessor	i – 1	i
S	S	0	0
В	S	5	5
С	S	7	7
D	E	6	4
E	В	1	1

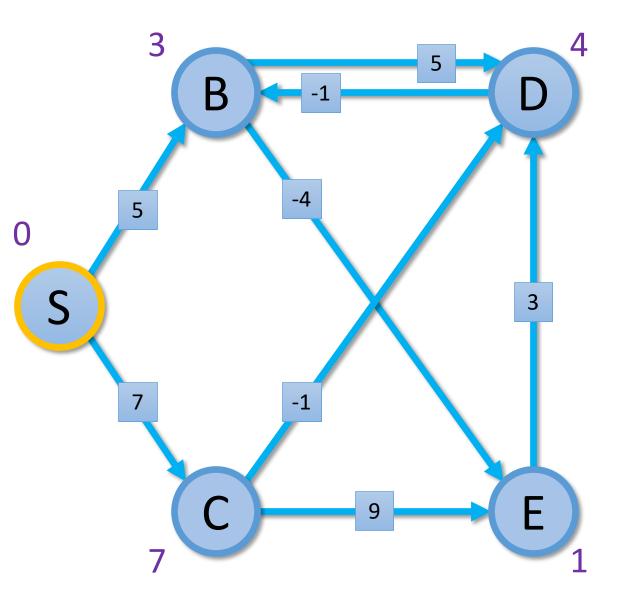


Vertex	Predecessor	i – 1 i
S	S	0
В	S	5 <table-cell-rows> 5</table-cell-rows>
С	S	7 — 7
D	E	6 4
E	В	1 — 1



i = 4

Vertex	Predecessor	i – 1	i
S	S	0	0
В	D	5	3
С	S	7	7
D	E	4	4
Е	В	1	1



	,		
Vertex	Predecessor	i – 1	i
S	S	0 ←	- 0
В	D	3 ←	- 3
С	S	7 ←	7
D	E	4 ←	4
E	В	1 ←	- 1

Last iteration is only to detect negative cycles.

What is the shortest path from S to B?

i = 5

Vertex	Predecessor	i – 1	i
S	S	0	0
В	D	3	3
С	S	7	7
D	E	4	4
E	В	1	-1

Summary of Bellman-Ford

Single-source shortest path problem (like Dijkstra's)

Running time is O(nm)

Works with negative weights

- Can detect negative cycles
 - Run the loop n times and if a path length goes down, then you've found a negative cycle