Universal Hashing

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Hash Tables

Operations:
5& * Insert
&+ Delete _ > What are they
sﬁ(+ Look-up not good for?

Guaranteed constant running time for those operations if:

e hash table is properly implemented, and
2. The datais non—patp@

Pathological Data Sets

* We hash functions to “spread-out” the data
(i.e., minimize collisions) >

* Unfortunately, no perfect hash function exists (it’s impossible)

* You can create a pathological data set for hash function

Untverse of ol

Pathological Data Sets | Purposefully select &%‘Ehe Ciladls

that map to th‘e same bucket.

Fix (create) the hash function h(x) =2 {0, 1, ..., n-1},
where n is the number of buckets in the hash table an@

With the pigeonhole principle, there must exist a bucket i, h(xh\ = L
such that at least |U|/n elements of U hash to i under@

T
- B

Pathological Data Set Example

e We want to store student student ID numbers in a hash table.

e We will store about students worth of data

[OC>
e Let’s use a hash table wit@éuckets

* Let’s use the fina@ the hash

Output:

s = 30 ///d Number of unique student IDs: 30
no= 8/ [H,_ Number of unique hash values: 28
def hash fen (id number) : Number of unique student IDs: 30

return id number % n Number of unique hash values: 1
id numbers = [randint (1000000, 9999999) for in range (s)]

hash values = map(hash fcn, id numbers)

print ('Number of unique student IDs:', len(set(id numbers)))
print ('Number of unique hash values:', len(set(hash values)))

id numbers pathological = [z d (num, -2) for num in 1d numbers]

hash values pathological map (hash fcn, id numbers pathological)

print ('Number of unique student IDs: 7, Ien(set{id mumbers—patiiclogical)))

print ('Number of unique hash values:', len(set(hash values pathological)))

Real World Pathological Da\tjk& 56S
A

e Denial of service attack (DOS)

* A study in 2003 found that they could interrupt the service of any
server with the following attributes:

1. The server used an open-source hash table
2. The hash table uses an easy-to-reverse-engineer hash function

* How does reverse engineering the hash function help an attacker?

Crocke a podldlagin| dakwt of TPs

Solutions to Pathological Data n () =

Use a cryptographic hash function

* Infeasible to create pathological data for such a function
(but not theoretically impossible)

ey

Use randomization (Can still be an open-source implementation!)

1. Create a family of hash functions
2. Randomly pick one at

Universal Hashing

Let H be a set of hash functions mapping U to {0, 1, ..., n-1}

The family H is universal if and only if for all x, y in

Pr(h(x) = h(y)) £ 1/n RN E R R A E s RS aTetale)8

where h is chosen uniformly at random from H

Hash functions do not consistently map a set of inputs to the same bucket

12

Example: Hashing IP Addresses |U| =232 =256

4,294,967,296

* What is [/? And how bigis |/?

includes all IP addresses, which we’ll denote as 4-tuples
example: X = (x4, X5, X3, X;) where x; is in [0, 255]

* Let n = some prime number that is near a multiple of the number of

objects we expect to store T p ff\ddfﬁﬁg’
example: |S| =500, we set n =997 —

/fHoYv Iargq\is the family of hash function?
* Let H be our set of hash functions \

NN

example: h(x) = A dot X mod n = (a@+ a{x)+ a®+ a@ mod n
where A = (a,, a,, a3, a,) and a, isin [0, n-1] IH| = n
H includes all combinations the coefficients in A _

A AR AR 988 I;iHion

h(x) = (a,X; + a,X, + a3X3 + a,X,) % N
Here are some members of H

* h(x)=(1-x;+ 1, + 1:x3+ 1:X4) % n
a @'Q AJE

2
oy 1

* hy(x) = (14-x3 + 13X, + 12:X3 + 11-X4) % n

14

n = 997

(frdef ip hash fen (X, A);
return sum({xX—~7Ta)for x, a in zip(X, A)]) % n

ip—address = [randrange(256) for in range(4)] # 1.e., 192.168.3.7
w = [randrange (n) for in range (4)]

print ("IP address
print ("Hash coefficients
print ("Hash value

IP address

", ".".Join(map(str, ip address)))

’

:", hash coeff)
:", 1p hash fcn(ip address, hash coeff))

’

X4 X, X3 X4
227.75.113.191
a, a, as a,

Hash coefficients : [394, 429, 328, 78]

Hash value

: 97

15

Example: Hashing IP Addresses

Theorem: the family is@

of functions that map x and y to the same location

1
< —
total # of functions n

* Llet H be a of hash functions mapping U to {0, 1, ..., n-1}
* The family H is universal if and only if for all x, y in

* Pr(h(x) = h(y)) £ 1/n

 where h is chosen uniformly at random from

Hashing IP Addresses Proof

e Consider two distinct IP addresses X and

* Assume that x, # v, (they might differ in other places as well)
 The same argument will hold regardless of which part of the tuple we consider

* Based on our choice o@ what is the probability of a collision?
* What fraction of hash functions (h,) cause a collision?

* Where h. is any of the hash function from H

* We want to show that < 1/n of the billions of hash functions have a
collision for X and

Theorem: for any possible hash function, the probability of a collision between objects Xand ¥V is < %

Hash functions are selected from the hash family by randomly generating four
values for 4

Collision between objects Xand V'

h(X) = h(Y)

(A-X)modn=(A-Y)modn

(ot +erxrta.x.+a,x.)modn = (a, v, + ay; +azys + a,y,) modn

@%()’1 —x1) + ax(y2 —x2) + az(ys — x3) + aqs(y, — X4WD

19

Theorem: for any possible hash function, the probability of a collision between objects Xand ¥V is < e

n

Hash functions are selected from the hash family by randomly generating four

values for 4

0=[a,(y; —x)+ay(y, —xy) +as(ys —x3) + a,(y, — x,)Jmod n
omething must ngﬁﬂeapbétwe@mndmc assume that X4 FVy
@XAL — ys) mod n .3’1 —x1) F ax(y; — x2) { Y3 — x3)]mod n

Wpends on a4

| Assume Ime.

—

From here we are going to fix our choices of 2, 2, and 2, and let 2, continue to be

a random variable

o —

Principle of Deferred Decisions

We want to show that for any value of 2, we have a

1
n

chance of a collision.

20

Theorem: for any possible hash function, the probability of a collision between objects

Something must be different between .Yand V. Let’s assume that

Non-zero value that depends on a,
P

a4£.._,.-——~.,~—_;_m od N =[a;(y; —x1) + ay, (¥, — x2) + az(y3 —

[;O,“ﬂ ~_ C

and YisSl

V4

Assume n is prime.

)]mod n

Eo/ "r\-_\}

From here we are going to fix our choices of 2, 2, and 2,and let 2, be a random

variable | Principle of Deferred Decisions

We want to show that for any value of 2, we have a

How many choices of a2, satisfy the above equation?

1 .
- chance of a collision.

* Our RHS is some constant! It is just some number in /0, n-1/because X, ¥, and 2, 2., a,are fixed

(° If nis a prime number, Bhen the LHS is equally likely to be any number from /0, n-1/
. is claim requiressome number theory to properly prove Unique multiplicative

Thus, based on our choice for a,, we have that 7r(/(X) =h(Y)) = 1/n

21

X = (X1, X5, X3, X4) Where x; isin [0, 255]

Y = (Y1, Y2, V3, Ya) Wherey;isin [0, 255]

Prlme number for N A = (ay, a,, a3, ;) and a,isin [0, n-1]

|S| =500
n =997

h(x) = (4 - X) mod n

0 G ' E z‘) (}VD q_ - O And H includes all combinations for the coefficients in A
. 1 U (=2 2
Different B%J 1 What do we want in
hash 2 72 (D% + 4
. the second column?

functions 3 5 . (2) O/o7 6
from the

4 \ﬁ N (’,2\ O/C)Dr 1 . L .
family H Different values indicate different
YT s < (Y%t 3

hash values, which is good.

5 (& -CN\%+ 5

a,(ey —ya)modn = [a;(y; —x) +a,(y, —x,) + as(ys — x3)Jmod n =

Prime number for n

n=7/,%=3,Y¥,=1 n=17/,%,=4,y,=1
a,(xy —y,) modn a,(xy —y,) modn

0 0 0 0
Different 1 2 1 3
hash 2 4 2 6
functions 3 6 3 2
from the 4 1 4 5
family H c 3 c 1

6 5 6 4

23

Non-Prime number for n

x4-y4 shares factors with n

n=8,%x,=3,y,=1 n=8x,=4,y,=1
s |_a,(xy —ys) modn

“ow s wm e ol

0 0 0
Different 2 1 3
hash 4 2 6
functions 6 3 1
:roml tllw_le 0 4 4
amiy 2 5 7
4 6 2
6 7 5

Summary

* We cannot create a hash function that prevents creation of a
pathological dataset

* As long as the hash function is known, a pathological dataset can be
created

 We can create families of hash functions that make it infeasible to
guess which hash function is in use

	Slide 1: Universal Hashing
	Slide 2: Hash Tables
	Slide 6: Pathological Data Sets
	Slide 7: Pathological Data Sets
	Slide 8: Pathological Data Set Example
	Slide 9
	Slide 10: Real World Pathological Data
	Slide 11: Solutions to Pathological Data
	Slide 12: Universal Hashing
	Slide 13: Example: Hashing IP Addresses
	Slide 14: h(x) = (a1x1 + a2x2 + a3x3 + a4x4) % n
	Slide 15
	Slide 16: Example: Hashing IP Addresses
	Slide 18: Hashing IP Addresses Proof
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Prime number for n
	Slide 23: Prime number for n
	Slide 24: Non-Prime number for n
	Slide 25: Summary

