
Universal Hashing
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Hash Tables

Operations:

• Insert

• Delete

• Look-up

Guaranteed constant running time for those operations if:

1. If the hash table is properly implemented, and

2. The data is non-pathological.

O(1) What are they
not good for?

2

Pathological Data Sets

• We want our hash functions to “spread-out” the data
(i.e., minimize collisions)

• Unfortunately, no perfect hash function exists (it’s impossible)

• You can create a pathological data set for any hash function

6

Pathological Data Sets

Fix (create) the hash function h(x) → {0, 1, …, n-1},
where n is the number of buckets in the hash table and n << |U|

With the pigeonhole principle, there must exist a bucket i,
such that at least |U|/n elements of U hash to i under h

1

2

3

365

…

a
b

c
d

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a
w

U

Purposefully select only the elements
that map to the same bucket.

7

Pathological Data Set Example

• We want to store student student ID numbers in a hash table.

• We will store about 30 students worth of data

• Let’s use a hash table with 87 buckets

• Let’s use the final three numbers as the hash

8

s = 30

n = 87

def hash_fcn(id_number):

 return id_number % n

id_numbers = [randint(1000000, 9999999) for _ in range(s)]

hash_values = map(hash_fcn, id_numbers)

print('Number of unique student IDs:', len(set(id_numbers)))

print('Number of unique hash values:', len(set(hash_values)))

id_numbers_pathological = [round(num, -2) for num in id_numbers]

hash_values_pathological = map(hash_fcn, id_numbers_pathological)

print('Number of unique student IDs:', len(set(id_numbers_pathological)))

print('Number of unique hash values:', len(set(hash_values_pathological)))

Output:
Number of unique student IDs: 30
Number of unique hash values: 28

Number of unique student IDs: 30
Number of unique hash values: 1

9

Real World Pathological Data

• Denial of service attack (DOS)

• A study in 2003 found that they could interrupt the service of any
server with the following attributes:

1. The server used an open-source hash table

2. The hash table uses an easy-to-reverse-engineer hash function

• How does reverse engineering the hash function help an attacker?

10

Solutions to Pathological Data

Use a cryptographic hash function

• Infeasible to create pathological data for such a function
(but not theoretically impossible)

Use randomization (Can still be an open-source implementation!)

1. Create a family of hash functions

2. Randomly pick one at runtime

11

Universal Hashing

Let H be a set of hash functions mapping U to {0, 1, …, n-1}

The family H is universal if and only if for all x, y in U

Pr(h(x) = h(y)) ≤ 1/n

where h is chosen uniformly at random from H

Hash functions do not consistently map a set of inputs to the same bucket

Probability of a collision given any hash function

12

Example: Hashing IP Addresses

• What is U? And how big is U?

• U includes all IP addresses, which we’ll denote as 4-tuples
example: X = (x1, x2, x3, x4) where xi is in [0, 255]

• Let n = some prime number that is near a multiple of the number of
objects we expect to store
example: |S| = 500, we set n = 997

• Let H be our set of hash functions
example: h(x) = A dot X mod n = (a1x1 + a2x2 + a3x3 + a4x4) mod n
 where A = (a1, a2, a3, a4) and ai is in [0, n-1]
 H includes all combinations the coefficients in A

|U| = 232 = 2564
=

4,294,967,296

|H| = n4

=
988 billion13

How large is the family of hash function?

h(x) = (a1x1 + a2x2 + a3x3 + a4x4) % n

Here are some members of H

• hα(x) = (1⋅x1 + 1⋅x2 + 1⋅x3 + 1⋅x4) % n

• hβ(x) = (0⋅x1 + 127⋅x2 + 91⋅x3 + 88⋅x4) % n

• hɣ(x) = (14⋅x1 + 13⋅x2 + 12⋅x3 + 11⋅x4) % n

14

n = 997

def ip_hash_fcn(X, A):

 return sum([x * a for x, a in zip(X, A)]) % n

ip_address = [randrange(256) for _ in range(4)] # i.e., 192.168.3.7

hash_coeff = [randrange(n) for _ in range(4)]

print("IP address :", ".".join(map(str, ip_address)))

print("Hash coefficients :", hash_coeff)

print("Hash value :", ip_hash_fcn(ip_address, hash_coeff))

IP address : 227.75.113.191

Hash coefficients : [394, 429, 328, 78]

Hash value : 97

x1 x2 x3 x4

a1 a2 a3 a4

15

Example: Hashing IP Addresses

Theorem: the family H is universal

 h(x) = A dot X mod n = (a1x1 + a2x2 + a3x3 + a4x4) mod n
 where A = (a1, a2, a3, a4) and ai is in [0, n-1]
 H includes all combinations the coefficients in A

• Let H be a set of hash functions mapping U to {0, 1, …, n-1}

• The family H is universal if and only if for all x, y in U

• Pr(h(x) = h(y)) ≤ 1/n

• where h is chosen uniformly at random from H

𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑚𝑎𝑝 𝑥 𝑎𝑛𝑑 𝑦 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
≤

1

𝑛

16

Hashing IP Addresses Proof

• Consider two distinct IP addresses X and Y

• Assume that x4 ≠ y4 (they might differ in other places as well)
• The same argument will hold regardless of which part of the tuple we consider

• Based on our choice of hi, what is the probability of a collision?
• What fraction of hash functions (hi) cause a collision? Pr[h(X) = h(Y)]

• Where hi is any of the hash function from H

• We want to show that ≤ 1/n of the billions of hash functions have a
collision for X and Y

18

Theorem: for any possible hash function, the probability of a collision between objects X and Y is ≤
1

𝑛

Hash functions are selected from the hash family by randomly generating four
values for A

ℎ 𝑋 = ℎ 𝑌

𝐴 ⋅ 𝑋 𝑚𝑜𝑑 𝑛 = 𝐴 ⋅ 𝑌 𝑚𝑜𝑑 𝑛

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 𝑚𝑜𝑑 𝑛 = 𝑎1𝑦1 + 𝑎2𝑦2 + 𝑎3𝑦3 + 𝑎4𝑦4 𝑚𝑜𝑑 𝑛

0 = [𝑎1 𝑦1 − 𝑥1 + 𝑎2 𝑦2 − 𝑥2 + 𝑎3 𝑦3 − 𝑥3 + 𝑎4 𝑦4 − 𝑥4]𝑚𝑜𝑑 𝑛

Collision between objects X and Y

19

Theorem: for any possible hash function, the probability of a collision between objects X and Y is ≤
1

𝑛

Hash functions are selected from the hash family by randomly generating four
values for A

0 = [𝑎1 𝑦1 − 𝑥1 + 𝑎2 𝑦2 − 𝑥2 + 𝑎3 𝑦3 − 𝑥3 + 𝑎4 𝑦4 − 𝑥4]𝑚𝑜𝑑 𝑛

Something must be different between X and Y. Let’s assume that x4 ≠y4

𝑎4 𝑥4 − 𝑦4 𝑚𝑜𝑑 𝑛 = [𝑎1 𝑦1 − 𝑥1 + 𝑎2 𝑦2 − 𝑥2 + 𝑎3 𝑦3 − 𝑥3]𝑚𝑜𝑑 𝑛

From here we are going to fix our choices of a1, a2, and a3 and let a4 continue to be
a random variable

We want to show that for any value of a4 we have a
1

𝑛
 chance of a collision.

Assume n is prime.Non-zero value that depends on 𝑎4

Principle of Deferred Decisions

20

Theorem: for any possible hash function, the probability of a collision between objects X and Y is ≤
1

𝑛

Something must be different between X and Y. Let’s assume that x4 ≠y4

𝑎4 𝑥4 − 𝑦4 𝑚𝑜𝑑 𝑛 = [𝑎1 𝑦1 − 𝑥1 + 𝑎2 𝑦2 − 𝑥2 + 𝑎3 𝑦3 − 𝑥3]𝑚𝑜𝑑 𝑛

From here we are going to fix our choices of a1, a2, and a3 and let a4 be a random
variable

We want to show that for any value of a4 we have a
1

𝑛
 chance of a collision.

How many choices of a4 satisfy the above equation?

• Our RHS is some constant! It is just some number in [0, n-1] because X, Y, and a1, a2, a3 are fixed

• If n is a prime number, then the LHS is equally likely to be any number from [0, n-1]
• This claim requires some number theory to properly prove

Thus, based on our choice for a4, we have that Pr(h(X) = h(Y)) = 1/n

Assume n is prime.

Principle of Deferred Decisions

Unique multiplicative

21

Non-zero value that depends on 𝑎4

TTYNs

Prime number for n

𝑎4 𝑎4 𝑥4 − 𝑦4 𝑚𝑜𝑑 𝑛

0

1

2

3

4

5

6

n = 7, x4 = 3, y4 = 1

What do we want in
the second column?

X = (x1, x2, x3, x4) where xi is in [0, 255]

Y = (y1, y2, y3, y4) where yi is in [0, 255]

A = (a1, a2, a3, a4) and ai is in [0, n-1]

|S| = 500

n = 997

h(x) = 𝐴 ⋅ 𝑋 𝑚𝑜𝑑 𝑛

And H includes all combinations for the coefficients in A0
2
4
6
1
3
5

22

Different values indicate different
hash values, which is good.

𝑎4 𝑥4 − 𝑦4 𝑚𝑜𝑑 𝑛 = [𝑎1 𝑦1 − 𝑥1 + 𝑎2 𝑦2 − 𝑥2 + 𝑎3 𝑦3 − 𝑥3]𝑚𝑜𝑑 𝑛

Different
hash
functions
from the
family H

Prime number for n

𝑎4 𝑎4 𝑥4 − 𝑦4 𝑚𝑜𝑑 𝑛

0

1

2

3

4

5

6

𝑎4 𝑎4 𝑥4 − 𝑦4 𝑚𝑜𝑑 𝑛

0

1

2

3

4

5

6

n = 7, x4 = 3, y4 = 1 n = 7, x4 = 4, y4 = 1

0
2
4
6
1
3
5

0
3
6
2
5
1
4

23

Different
hash
functions
from the
family H

Non-Prime number for n

𝑎4 𝑎4 𝑥4 − 𝑦4 𝑚𝑜𝑑 𝑛

0

1

2

3

4

5

6

7

𝑎4 𝑎4 𝑥4 − 𝑦4 𝑚𝑜𝑑 𝑛

0

1

2

3

4

5

6

7

n = 8, x4 = 3, y4 = 1 n = 8, x4 = 4, y4 = 1

0
2
4
6
0
2
4
6

0
3
6
1
4
7
2
5

x4-y4 shares factors with n

24

Different
hash
functions
from the
family H

Summary

• We cannot create a hash function that prevents creation of a
pathological dataset

• As long as the hash function is known, a pathological dataset can be
created

• We can create families of hash functions that make it infeasible to
guess which hash function is in use

25

	Slide 1: Universal Hashing
	Slide 2: Hash Tables
	Slide 6: Pathological Data Sets
	Slide 7: Pathological Data Sets
	Slide 8: Pathological Data Set Example
	Slide 9
	Slide 10: Real World Pathological Data
	Slide 11: Solutions to Pathological Data
	Slide 12: Universal Hashing
	Slide 13: Example: Hashing IP Addresses
	Slide 14: h(x) = (a1x1 + a2x2 + a3x3 + a4x4) % n
	Slide 15
	Slide 16: Example: Hashing IP Addresses
	Slide 18: Hashing IP Addresses Proof
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Prime number for n
	Slide 23: Prime number for n
	Slide 24: Non-Prime number for n
	Slide 25: Summary

