Kosaraju’s Algorithm for
Strongly Connected s¢
Components

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

* Review topological orderings
* Discuss strongly connected components
e Cover Kosaraju’s Algorithm

cﬁ * Work through Kosaraju’s Algorithm

Extra Resources

* Introduction to Algorithms, 3rd, chapter 22
e Algorithms llluminated Part 2: Chapter 8

Topological Orderings
Definition: a topological ordering of a @ed ac@raph IS a
labelling T of the graph’s vertices such

1. The f-values are of the set {1, 2, ..., n}
2. For an edge (u, v) of G, f(u) < f(v)

2 Or3

1 Q 4
“rz

Are you gquomrlesd 1o

I\

Solve with DFS ol o “sinkT N o DAG?

FUNCTION TopologicalOrdering(G) FUNCTION DFSTopological(G, v, found, f, fValues)
found = {v: FALSE FOR v IN G.vertices} found[v] = TRUE
fValues = {v: INFINITY FOR v IN G.vertices} FOR vOther IN G.edges|[V]
f = G.vertices.length IF found[vOther] == FALSE
FOR v IN G.vertices D DFSTopological (G, vOther, found, f, fValues)
IF found[v] == FALSE fValues[v] = f
DFSTopological (G, v, found, f, fValueg) f=F-1

A H7 4 DAG
C

Strongly Connected Components ‘B

* Topological orderings are useful in their own right, G ’
but they also let us calculate the 0
of a graph
* A of a graph is strongly connected if we

can find a path from any vertex to any other vertex
* This is a concept for directed graphs only A

* (just connected components for undirected graphs)

Why are SCCs useful?

What are the strongly connected components of this graph?

What are the strongly connected components of this graph?

——®

What are the strongly conQeC.tg

d components of this graph?
.

What are the strongly connected components of this graph?

)
R O W O J oy U b W DN+~

——

e

—~

O = o O U1 Jd o O = W N

|_||_\I_I\

- ~

1 N

— %

—
O
~

~

|_\
H

o - °
G = {
1: [2],
2: |3,
3: [1,
4: [5,
5o: [o],
o: [7],
7: [5],
8: [Db,
9: [8],
10: [11]
11: [9]
}

|_\
O
~

~

|_\
I_\

What are the strongly connec.tgd components of this graph?

uENy
+* e

11

Can we use DFS?

What does a DFS do?
* Finds everything that is findable
* Does not visit any vertex more than once

So, what can we find from each of the different nodes?

What if we start DFS here? \> *"® LIS

& L ' What if we start DFS here?
‘ .:'-'-T-""""__’ - -
2
2
Q
[
N
]
| |
|)
|
.
2

What if we start DFS here?

13

J—
[Meta Graph ’

3¢ - Melor -0

Meta graph sink

14

Meta Graph

NS

N

Meta graph sink

15

SCC2
R ¢
‘ Meta graph sink <>L{

=

16

Kosaraju

Computes the SCCs in O(m + n) time (linear!)
1. Create a reverse version of the G called

17

Kosaraju

Computes the SCCs in O(m + n) time (linear!)

1. Create a reverse version of the G called

2. Run Kosar‘aluLab_gls on

- Compute a topological order of the meta graph

3. Create a relabeled version of the G called G relabeled

4. Run KosarajuLeadersonG relabeled

19

FUNCTION Kosaraju(G)
G _reversed = reverse _graph(G)
new labels = KosarajulLabels(G reversed)

G _relabeled = relabel graph(G, new_ labels)
leaders = KosarajuLeaders(G_relabeled)

RETURN leaders

20

FUNCTION Kosaraju(G)
G _reversed = reverse _graph(G)
new labels = KosarajulLabels(G reversed)

G _relabeled = relabel graph(G, new_ labels)
leaders = KosarajuLeaders(G_relabeled)

RETURN leaders

21

FUNCTION KosarajulLabels(G)
found =s-{x: FALSE FOR v IN G.vertices}
label
labels

FOR v IN G.vertices
IF found[v] == FALSE

FUNCTION Kosaraju(G) DFSLabels(G, v, found, label, labels)
G_reversed = reverse graph(G) .

new_labels = KosarajulLabels(G reversed)

v: NONE FOR v IN G.vertices}

RETURN labels
G_relabeled = relabel graph(G, new_labels)

leaders = KosarajulLeaders(G_relabeled)

RETURN leaders

FUNCTION DFSLabels(G, v, found, label, labels)
found[v] = TRUE
FOR vOther IN G.edges[V]
IF found[vOther] == FALSE

FStabeldTs, vOther, found, label, labels)
label + 1
labels|[v

—Jabel

22

FUNCTION Kosaraju(G)
G_reversed = reverse graph(G)
new_labels = KosarajulLabels(G_ reversed)

G_relabeled = relabel graph(G, new_labels)
leaders = KosarajulLeaders(G_relabeled)

RETURN leaders

FUNCTION KosarajulLeaders(G)
found = {v: FALSE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse order
IF found[v] == FALSE
leader = v
DFSLeaders(G, v, found, leader, leaders)

RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE
ﬂk leaders[v] = leader
FOR vOther IN G.edges|[V]
IF found[vOther] == FALSE
DFSLeaders(G, vOther, found, leader, leaders)

23

FUNCTION KosarajuLabels(G) FUNCTION KosarajulLeaders(G)
found = {v: FALSE FOR v IN G.vertices} found = {v: FALSE FOR v IN G.vertices}
label = © leaders = {v: NONE FOR v IN G.vertices}
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse order

FOR v IN G.vertices IF found[v] == FALSE
IF found[v] == FALSE leader = v
DFSLabels(G, v, found, label, labels) DFSLeaders(G, v, found, leader, leaders)
RETURN labels RETURN leaders
FUNCTION DFSLabels(G, v, found, label, labels) FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE found[v] = TRUE
FOR vOther IN G.edges[V] leaders[v] = leader
IF found[vOther] == FALSE FOR vOther IN G.edges|[V]
DFSLabels(G, vOther, found, label, labels) IF found[vOther] == FALSE
label = label + 1 DFSLeaders(G, vOther, found, leader, leaders)

labels[v] = label

These are typically implemented in a single function

24

FUNCTION KosarajuLabels(G) FUNCTION KosarajulLeaders(G)
found = {v: FALSE FOR v IN G.vertices} found = {v: FALSE FOR v IN G.vertices}
label = © leaders = {v: NONE FOR v IN G.vertices}
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_ order

FOR v IN G.vertices IF found[v] == FALSE
IF found[v] == FALSE leader = v
DFSLabels(G, v, found, label, labels) DFSLeaders(G, v, found, leader, leaders)
RETURN labels RETURN leaders
FUNCTION DFSLabels(G, v, found, label, labels) FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE found[v] = TRUE
FOR vOther IN G.edges[V] leaders[v] = leader
IF found[vOther] == FALSE FOR vOther IN G.edges|[V]
DFSLabels(G, vOther, found, label, labels) IF found[vOther] == FALSE
label = label + 1 DFSLeaders(G, vOther, found, leader, leaders)

labels[v] = label

These are typically implemented in a single function

25

FUNCTION KosarajuLabels(G) FUNCTION KosarajulLeaders(G)
found = {v: FALSE FOR v IN G.vertices} found = {v: FALSE FOR v IN G.vertices}

label = © eaders = {v: NONE FOR v IN G.vertices}

labels = {v: NONE FOR v IN G.ver‘ticiii///////////////1
‘.ﬂ#’#'-#’ﬂ#’ﬂ#’ﬂ__#’##_ﬂﬂ_ﬂ_ﬂ#,ﬂEQR.M.IN-vaePtieeSTreverse_order

FOR v IN G.vertices IF found[v] == FALSE

IF found[v] == FALSE = leader =v

DFSLabels(G, v, found, label, labels), DFSLeaders(G, v, found, leader, leaders)
RETURN labels RETURN leaders
FUNCTION DFSLabels(G, v, found, label, labelsf FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE found[v] = TRUE
FOR vOther IN G.edges[V] leaders[v] = leader
IF found[vOther] == FALSE FOR vOther IN G.edges|[V]
DFSLabels(G, vOther, found, label, labels) IF found[vOther] == FALSE
label = label + 1 DFSLeaders(G, vOther, found, leader, leaders)

labels[v] = label

These are typically implemented in a single function

26

FUNCTION Kosar‘aj(G)
found = {v: FATCSE FOR v IN G.vertices} Does both labels and leaders.

label = ©
labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE
leader = v

KosarajuDFS(G, v, found, label, labels, leader, leaders)

RETURN labels, leaders

FUNCTION Kosaraj GEF(G, v, found, label, labels, leader, leaders)
found[v] = TRU

leaders[v] = leader
FOR vOther IN G.edges[V]
IF found[vOther] == FALSE

KosarajuDFS(G, v, found, label, labels, leader, leaders)
label = label + 1

labels[v] = label

27

FUNCTION Kosaraju(G)
G _reversed = reverse _graph(G)
new labels = Kosaraju (G_reversed)

G _relabeled = relabel graph(G, new_ labels)
leaders = Kosaraju (G_relabeled)

RETURN leaders

28

FUNCTION Kosaraju(G)

G _reversed = reverse _graph(G)
new labels, = KosarajuLoop(G reversed)

G _relabeled = relabel graph(G, new_ labels)

_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders

E O S‘\G/ ¢
\(\A o /\f\cﬁ(\

29

Kosaraju

Computes the SCCs in O(m + n) time (linear!)

1. Create a reverse version of the G called
2. RunKosarajulLoop on
Compute a topological order of the meta graph

3. Create a relabeled version of the G called G relabeled

4. Run KosarajuLoopon G relabeled

30

What are
the SCCs?

w labels,

aju(G)

G_reversed = reverse graph(G)
KosarajuLoop(G_reversed)

>
G _relabeled = relabel graph(G, new labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders

Where do we want to start DFS if
we are looking for SCCs? (Which
SCC is best to find first?)

31

FUNCTION Kosaraju(G)

new_ labels, = KosarajuLoop(G_reversed)

G _relabeled = relabel graph(G, new labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders Where do we want to start DFS if

we are looking for SCCs? (Which
SCC is best to find first?)

32

FUNCTION Kosaraju(G)
G_reversed = reverse graph(G)

(NOrC
G _relabeled = relabel graph(G, new labels)

_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders Where do we want to start DFS if
we are looking for SCCs? (Which

G _reversed SCC is best to find first?)

33

FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}

vt - 4 K 7

labels = {v: NONE FOR VééN G.vertices}

FOR v IN G.vertices.reverse_order CS“
IF found[v] == FALSE&

ﬁ —, KosarajuDFS(..)

Can we start anywhere?

RETURN labels

FUNCTION KosarajuDFS(..)
found[v] = TRUE

FOR vOther IN G.edges[V]
IF found[vOther] == FALSE (E
KosarajuDFS(..)
label = label + 1
labels[v] = label

lgnore leaders the first pass
lgnore labels the second pass

Sink SCC in

Meta Graph

G_reversed
G_relabelep

Multiple possibilitie

FUNCTION Kosaraju(G)
G_reversed = reverse graph(G)
new_ labels, = KosarajuLoop(G_reversed)

G _relabeled = relabel graph(G, new labels)

RETURN leaders

G_relabeled

37

FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}

leaders = {v: NONE FOR v IN G.vertices}

FOR@IN G.vertices.reverse_order Q“
found[v] == FALSE
leader = v éj

KosarajuDFS(...)

RETURN labels, leaders

FUNCTION KosarajuDFS(..)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[V]
IF found[vOther] == FALSE
KosarajuDFS(..)

lgnore leaders the first pass

lgnore labels the second pass

39

Sink SCC in
Meta Graph

G_reversed

G_relabeled

FUNCTION Kosaraju(G)
G_reversed = reverse graph(G)
new labels, = KosarajuLoop(G _reversed)
G _relabeled = relabel graph(G, new labels)
_, leaders = KosarajuLoop(G_relabeled)

_ What could you do to make this APl a bit nicer

-~J

G_relabeled

41

Exercise

FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE
leader = v

KosarajuDFS(G, v, found, label, labels, leader, leaders)

RETURN labels, leaders

FUNCTION Kosaraju(G)
G_reversed = reverse graph(G)
new_labels, = KosarajuLoop(G reversed)

G _relabeled = relabel graph(G, new labels)
_, leaders = KosarajuLoop(G relabeled)

RETURN leaders

FUNCTION KosarajuDFS(G, v, found, label, labels, leader, leaders)

found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[V]
IF found[vOther] == FALSE

KosarajuDFS(G, v, found, label, labels, leader, leaders)

label = label + 1
labels[v] = label

42

Why does this work?

* Does this work for all graphs, or just this example?
(H—s
70

4

* The SCCs of G create an acyclic “meta-graph”

* For the “meta-graph”
* Vertices correspond to the SCCs
* Edges correspond to paths among the SCCs

O

SCC2

SCC1

44

45

How do we know that the SCC based meta-
graph is acyclic?

Original Graph (Random Labels) Reverse Graph (Random Labels)

Key Lemma

SCC1 SCC2 SCC1 SCC2

Consider the two adjacent SCCs in the meta-graph above

Now consider the re-labeling found from the reverse graph | FUNCTION KosarajuDFS(..)
found[v] = TRUE

Where do we want to start DFS in the leaders pass? leaders[v] = leader
Let f(v) = the re-labeling resulting from FOR vOther IN G.edges[v]
KosarajuLoop(G_reversed) IF found[vOther] == FALSE

KosarajuDFS(..)
label = label + 1

Thenmax[f(.) in SCC1] < max[f(.) in SCC2] labels[v] = label

Corollary: the maximum label must lie in a “sink SCC” of
the original graph

48

50

L 4
|
]
|
.
\d

Max label of SCC1 = F1

2

4

Max label of SCC2 = F2
\ W 4

\d
a
|
N

L

Qgpas
°

a

|

|
4

¢
*
» ® Maxlabel of SCC3 = F3

Then F1<{F2, F3} < F4

¢ 0’ Max label of SCC4 = F4

51

Max label of SCC2 = F2
A 4

4
4 “
. a
: |
- |
\ g ’.
¢ Maxlabel of SCC4 =F4

Max label of SCC1 = F1

Then F1<{F2,F3}<F4

What would happen if SCC4 had a link back to SCC3?

52

— S Reverse Graph

Original Graph Case 1 Case 2
Proof of | S|
m\i\e MMma
\
= \S
G) \G‘be SCC1 SCC2 \ scc1 <ﬁ SCC2
N@m\ _
Case 1: consider the case when the first vertex FUNCTION KosarajuDFS(.)
that we explore is in SCC1 found[v] = TRUE
J{ﬁ&??‘ﬁf& leaders[v] = leader

FOR vOther IN G.edges[V]
IF found[vOther] == FALSE
KosarajuDFS(..)

* Therefore, all labels in SCC1 are less than all labels in label = label =+ 1
SCC2 labels[v] = label

* Then all SCC1 is explered before SCC2

e So, in the original graph we will start in SCCZ (the sink

53

Original Graph

Proof of
emma

SCC1 SCC2

Case 2: consider the case when the first vertex that we explore is in SCC2

All other vertices in SSC2 are explored before vertex j

JATY f-c\

All vertices in SSC1 are explored before vertex j

Therefore, all labels in SSC1 and SSC2 are less than the label of vertex j

"

2

So, in the original graph we will start at vertex j in SSC2 (the sink)

Reverse Graph
Casel Case 2

¥y 7
SCC1 SCC2

MoX = ¥

FUNCTION KosarajuDFS(..)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[V]
IF found[vOther] == FALSE
KosarajuDFS(..)
label = label + 1
labels[v] = label

54

What does this mean?

* We'll start the second KosarajuLoop at an “SCC sink”

* That sink will then be removed (by marking all vertices in the SCC as
explored) and we’ll next move to the newly created sink

e And so on

Kosaraju’s Algorithm Summary

Computes the SCCs in O(m + n) time (linear!)
1. Create a reverse version of the G called

2. Run KosarajuLoop on
* Create a topological ordering on the meta graph

3. Create a relabeled version of the G called

4. Run KosarajuLoop on
* Find all nodes with the same “leader”

why/

[Crese

56

	Slide 1: Kosaraju’s Algorithm for Strongly Connected Components
	Slide 2: Outline
	Slide 3: Extra Resources
	Slide 4: Topological Orderings
	Slide 5: Solve with DFS
	Slide 6: Strongly Connected Components
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Can we use DFS?
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Kosaraju
	Slide 18
	Slide 19: Kosaraju
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Kosaraju
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Why does this work?
	Slide 44
	Slide 45
	Slide 46
	Slide 47: How do we know that the SCC based meta-graph is acyclic?
	Slide 48: Key Lemma
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Proof of Lemma
	Slide 54: Proof of Lemma
	Slide 55: What does this mean?
	Slide 56: Kosaraju’s Algorithm Summary

