
Quicksort Running Time
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

• Learn how quicksort works

• Learn how to partition an array

Exercise

• Running time

2

Extra Resources

• https://me.dt.in.th/page/Quicksort/

• https://www.youtube.com/watch?v=ywWBy6J5gz8

• CLRS Chapter 7

• Algorithms Illuminated Chapter 5

3

https://me.dt.in.th/page/Quicksort/
https://www.youtube.com/watch?v=ywWBy6J5gz8

Choosing a Pivot

What is Quicksort’s running time? (can we use master theorem?)
• It depends on the pivot

What is a recurrence for Quicksort?

4

Choosing a Pivot

What is Quicksort’s running time? (can we use master theorem?)
• It depends on the pivot

What is the worst case for Quicksort, and what is its running time?
• Always select the smallest (or largest) possible pivot and it takes O(n2)
• Think of a one-sided tree

What is the best case for Quicksort, and what is its running time?
• Always select the median element as a pivot leading to O(n lg n)
• Think of a balanced tree

5

8

4 3

2 1 1 1

1

8

7

6

5

4

3

2

1

5n = 40 5n = 40

+ 5 (n-1) = 35

+ 5 (n-2) = 30

Let’s assume
the cost of
Partition is 5m

+ 5 (n-3) = 25

+ 5 (n-4) = 20

+ 5 (n-5) = 15

+ 5 (n-6) = 10

T(n) = 180

+ 5 (n-1) = 35

+ 5 (n-3) = 25

+ 5 (n-7) = 5

+ 5 (n-7) = 5

T(n) = 105

Recursion tree for the worst and best cases of Quicksort

6

How would you select a pivot?

• If pivot selection is so important, how should we do it?

• Shouldn’t we take great care in selecting the pivot?

• Key idea for Quicksort: select the pivot uniformly at random!
• Easy

• Fast

• Gets good results as long as the pivots are “decent” fairly “often”

7

Random Pivots

• Some foreshadowing:

If the randomly chosen pivot is close to the median (in the middle
25-75 percentile range) we will get an average running time of O(n lg n)

• We cannot use the master theorem

• We are going to show the runtime of quicksort another way

8

What is our Quicksort Theorem?

Theorem: For every input of the array of length n, the average running time
of quicksort with random pivots is O(n lg n).

This is a big deal; it means that the average running time is closer to the
best-case than it is to the worst-case.

Note: here, average refers to the algorithm itself–it does not depend on the
input.

• If we re-run quicksort on the same input we will get different pivots each
time, and we are talking about the average running time of quicksort for
these different sequences of pivots on the same input array.

9

Quicksort

FUNCTION QuickSort(array, left_index, right_index)

IF left_index ≥ right_index

RETURN

MovePivotToLeft(left_index, right_index)

pivot_index = Partition(array, left_index, right_index)

QuickSort(array, left_index, pivot_index)

QuickSort(array, pivot_index + 1, right_index)

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

IF array[j] < pivot_value

swap(array, i, j)

i = i + 1

swap(array, left_index, i - 1)

RETURN i - 1

We are going to count the number of comparisons
performed inside the for-loop.

Most of the work is done inside Partition

10

Some notation

Let Zi = ith smallest element of A (not the ith element)

11

Zi

Z

Index 0 1 2 3 4 5 6 7

Value 51 43 17 83 79 23 61 37

What is Z1

12

Zi

Z Z1
Index 0 1 2 3 4 5 6 7

Value 51 43 17 83 79 23 61 37

What is Z2

13

Zi

Z Z1 Z2
Index 0 1 2 3 4 5 6 7

Value 51 43 17 83 79 23 61 37

14

Zi

Z Z5 Z4 Z1 Z8 Z7 Z2 Z6 Z3
Index 0 1 2 3 4 5 6 7

Value 51 43 17 83 79 23 61 37

15

Some notation

Let Zi = ith smallest element of A (not the ith element)

Let Xi,j be a random variable for the number of times Zi and Zj get
compared during a call to Quicksort

i and j can be any indices, but I’ll normally use i for the lower index

How many times can Zi and Zj possibly be compared?

16

X2,4

Z Z5 Z4 Z1 Z8 Z7 Z2 Z6 Z3
Index 0 1 2 3 4 5 6 7

Value 51 43 17 83 79 23 61 37

17

Exercise Question 1
How many times can two elements be compared by a single run of the

Quicksort algorithm?

Some notation

Let Zi = ith smallest element of A (not the ith element)

Let Xi,j be a random variable for the number of times Zi and Zj get
compared during a call to Quicksort

How many times can Zi and Zj possibly be compared?

• Can only be compared 0 or 1 times!

• Every comparison involves the pivot, but the pivot is excluded from
recursive calls.

19

X2,4 =
left_index right_index

Z4 Z1 Z8 Z7 Z2

Z Z5 Z4 Z1 Z8 Z7 Z2 Z6 Z3
Index 0 1 2 3 4 5 6 7

Value 51 43 17 83 79 23 61 37

X1,7 =

20

FUNCTION QuickSort(array, left_index, right_index)

IF left_index ≥ right_index

RETURN

MovePivotToLeft(left_index, right_index)

pivot_index = Partition(array, left_index, right_index)

QuickSort(array, left_index, pivot_index)

QuickSort(array, pivot_index + 1, right_index)

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

IF array[j] < pivot_value

swap(array, i, j)

i = i + 1

swap(array, left_index, i - 1)

RETURN i - 1

The upper index is exclusive

right_index is not included in comparisons

Every comparison involves the pivot, but the pivot is excluded from recursive calls.

21

Exercise Question 2
How many comparisons will be performed by Quicksort if we always
pick the median element as the pivot? You only need to consider the

case when n = 8. You should draw a recursion tree and note how many
comparisons are performed at each subproblem.

23

Considering Xi,j

• Space of all possible outcomes is Ω
• A comparison happens (1)

• Or it doesn’t (0)

• This is an indicator variable

• What is the expected value of Xi,j (E[Xi,j])?
• We need to know the probability of a comparison

𝑝(𝑋𝑖,𝑗 = 1)

24

Zi, Zj

Z5 Z4 Z1 Z8 Z7 Z2 Z6 Z3
51 43 17 83 79 23 61 37

What is the probability that Z3 (37) and Z7 (79) are compared?

25

Probability that Zi, Zj get compared

Consider any Zi, Zi+1 , …, Zj-1, Zj from the array

• Remember that these are not contiguous in the array, they are
numbers in increasing order

What can you tell me about this group of numbers? (Hint: consider
different values for the pivot element)

If none of these are chosen as a pivot, all are passed to the same
recursive call.

p(𝑋𝑖,𝑗 = 1)

26

Probability that Zi, Zj get compared

Consider any Zi, Zi+1 , …, Zj-1, Zj from the array

Among these values, consider the first one that gets chosen

1. If Zi or Zj are chosen first, then Zi and Zj are compared.

2. If one of Zi+1, …, Zj-1 is chosen, then Zi and Zj are NEVER compared.

Why?

1. If is chosen, then they become a pivot and the two values get compared

2. If a value in the middle gets chosen, then they go to separate calls

p(𝑋𝑖,𝑗 = 1)

27

Zi, Zj

Z5 Z4 Z1 Z8 Z7 Z2 Z6 Z3
51 43 17 83 79 23 61 37

What is the probability that Z3 (37) and Z7 (79) are compared?

28

Each recursive call we have three options for Z3 and Z7:

1. One is selected as pivot, and they are compared. (X3,7 = 1)
2. An item between them is selected and they are split apart. (X3,7 = 0)
3. An item outside their range is selected and they are partitioned together.

Probability that Zi, Zj get compared

𝑝 𝑋𝑖,𝑗 = 1 =
2

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑐ℎ𝑜𝑖𝑐𝑒𝑠
=

2

𝑗 − 𝑖 + 1

• What does this mean for two values that are close to each other?

• What does this mean for two values that are far from each other?

29

Counting the total number of comparisons

What is the equation for the total number of comparisons?

T = ෍

𝑖=1

𝑛−1

෍

𝑗=𝑖+1

𝑛

𝑋𝑖,𝑗

𝐸 𝑇 = ෍

𝑖=1

𝑛 −1

෍

𝑗=𝑖+1

𝑛

𝐸[𝑋𝑖,𝑗]
Linearity of expectations

Every possible comparison

30

Counting the total number of comparisons

𝐸 𝑇 = ෍

𝑖=1

𝑛 −1

෍

𝑗=𝑖+1

𝑛

𝐸[𝑋𝑖,𝑗]

𝐸 𝑇 = ෍

𝑖=1

𝑛 −1

෍

𝑗=𝑖+1

𝑛

p 𝑋𝑖,𝑗 = 1 ⋅ 1 + p 𝑋𝑖,𝑗 = 0 ⋅ 0

31

Counting the total number of comparisons

𝐸 𝑇 = ෍

𝑖=1

𝑛 −1

෍

𝑗=𝑖+1

𝑛

𝐸[𝑋𝑖,𝑗]

𝐸 𝑇 = ෍

𝑖=1

𝑛 −1

෍

𝑗=𝑖+1

𝑛

p 𝑋𝑖,𝑗 = 1 ⋅ 1 + p 𝑋𝑖,𝑗 = 0 ⋅ 0

32

Counting the total number of comparisons

𝑝 𝑋𝑖,𝑗 = 1 =
2

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑐ℎ𝑜𝑖𝑐𝑒𝑠
=

2

𝑗 − 𝑖 + 1

𝐸 𝑇 = ෍

𝑖=1

𝑛 −1

෍

𝑗=𝑖+1

𝑛

𝑝 𝑋𝑖,𝑗 = 1 = ෍

𝑖=1

𝑛−1

෍

𝑗=𝑖+1

𝑛
2

𝑗 − 𝑖 + 1

33

Simplifying the Inner Summation

Consider a fixed value for i (i=1)

෍

𝑗=𝑖+1

𝑛
2

𝑗 − 𝑖 + 1
= ෍

𝑗=2

𝑛
2

𝑗
= 2 ⋅

1

2
+

1

3
+ ⋯ +

1

𝑛 − 1 + 1

Consider another fixed value for i (i=5)

෍

𝑗=𝑖+1

𝑛
2

𝑗 − 𝑖 + 1
= ෍

𝑗=6

𝑛
2

𝑗 − 4
= 2 ⋅

1

2
+

1

3
+ ⋯ +

1

𝑛 − 5 + 1

෍

𝑖=1

𝑛−1

෍

𝑗=𝑖+1

𝑛
2

𝑗 − 𝑖 + 1

The inner summation
is maximized with i=1

34

Counting the total number of comparisons

p 𝑋𝑖,𝑗 = 1 =
2

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑐ℎ𝑜𝑖𝑐𝑒𝑠
=

2

𝑗 − 𝑖 + 1

𝐸 𝑇 = ෍

𝑖=1

𝑛 −1

෍

𝑗=𝑖+1

𝑛

p 𝑋𝑖,𝑗 = 1 = ෍

𝑖=1

𝑛−1

෍

𝑗=𝑖+1

𝑛
2

𝑗 − 𝑖 + 1

𝐸 𝑇 ≤ 2 ෍

𝑖=1

𝑛−1

෍

𝑗=2

𝑛
1

𝑗 − 1 + 1

Simplify by turning this
into an inequality and

taking the value for i that
results in the biggest

number
Summations no

longer depends on i

35

Counting the total number of comparisons

𝐸 𝑇 ≤ 2 ෍

𝑖=1

𝑛−1

෍

𝑗=2

𝑛
1

𝑗 − 1 + 1

𝐸 𝑇 ≤ 2𝑛 ෍

𝑗=2

𝑛
1

𝑗

Summations no
longer depends on i

36

37

Counting the total number of comparisons

𝐸 𝑇 ≤ 2 ෍

𝑖=1

𝑛−1

෍

𝑗=2

𝑛
1

𝑗 − 1 + 1

𝐸 𝑇 ≤ 2𝑛 ෍

𝑗=2

𝑛
1

𝑗

𝐸 𝑇 ≤ 2𝑛 න

2

𝑛
1

𝑥
𝑑𝑥 = 2𝑛 ln 𝑥

𝑛

2
= 2𝑛(ln 𝑛 − ln 2) ≤ 2𝑛 ln 𝑛 = 𝑂(𝑛 lg 𝑛)

Summations no
longer depends on i

Change of base for logarithms

38

Summary

𝐸 𝑇 ≤ 𝑂(𝑛 lg 𝑛)

• The expected number of comparisons is O(n lg n)

• The expected number of comparisons is directly proportional to the total
running time of Quicksort

• The average asymptotic running time of Quicksort of O(n lg n)

• Theorem: For every input of the array of length n, the average running
time of Quicksort with random pivots is O(n lg n).

39

	Slide 1: Quicksort Running Time
	Slide 2: Outline
	Slide 3: Extra Resources
	Slide 4: Choosing a Pivot
	Slide 5: Choosing a Pivot
	Slide 6
	Slide 7: How would you select a pivot?
	Slide 8: Random Pivots
	Slide 9: What is our Quicksort Theorem?
	Slide 10: Quicksort
	Slide 11: Some notation
	Slide 12: Zi
	Slide 13: Zi
	Slide 14: Zi
	Slide 15: Zi
	Slide 16: Some notation
	Slide 17: X2,4
	Slide 18: Exercise Question 1
	Slide 19: Some notation
	Slide 20: X2,4 =
	Slide 21
	Slide 22: Exercise Question 2
	Slide 23
	Slide 24: Considering Xi,j
	Slide 25: Zi, Zj
	Slide 26: Probability that Zi, Zj get compared
	Slide 27: Probability that Zi, Zj get compared
	Slide 28: Zi, Zj
	Slide 29: Probability that Zi, Zj get compared
	Slide 30: Counting the total number of comparisons
	Slide 31: Counting the total number of comparisons
	Slide 32: Counting the total number of comparisons
	Slide 33: Counting the total number of comparisons
	Slide 34: Simplifying the Inner Summation
	Slide 35: Counting the total number of comparisons
	Slide 36: Counting the total number of comparisons
	Slide 37
	Slide 38: Counting the total number of comparisons
	Slide 39: Summary

