Master Method
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Notes on checkpoint

* The checkpoint will be administered through gradescope
* You may bring a single, two-sided 8” by 11” note sheet (no restrictions)
* You must come to class to complete it

* You have these options (maybe more?)
* Write answers directly on gradescope (bring your laptop)
* Write answers on paper and upload to gradescope
* Write answers on a tablet, export to image or PDF, and upload to gradescope

* You will have plenty of time, so you might want to bring something to read
during the down time

* We will have two stages to the exam
* An individual stage
* And a group stage



Outline

e Learn about the master method for
e Understand how to draw recursion trees

* Applying the Master Method
W



Extra Resources

* Chapter 4 (sections 4-6) in CLRS
* Algorithms llluminated: Part 1: 4Chapter 4
%- Master Method



https://www.cs.cornell.edu/courses/cs3110/2012sp/lectures/lec20-master/lec20.html

Master Method

* For “solving” recurrences

63N

T(n) = the # of operations required to complete algorithm
T(n) =2T(n/2) + 7n

A T
Base Case: T(1) < base—c.ase—work | Sﬁk( & I \s
Recurrence: n) K recursive-work + combine-work ‘QJ&\}Y%\J
Cf)q%< 2 M’E/J( O(n j + 0



Recurrence Equation

* When an algorithm contains a recursive call to

* We usually specify its running time by a recurrence equation

7

* We also sometimes just call this a “

* A recurrence equation describes the overall running time on a
problem of size n in terms of the running time on smaller inputs
(some fraction of n)



FUNCTION MergeSort(array)

Recurrence Equation

= array.length

oy T(n)

2 T(n/2) + 0(n)

n —_—=

RETURN array
t_sorted = MergeSort(array[0 ..< n//2])
ht_sorted = MergeSort(array[n//2 ..< n])

ray_sorted = Merge(left_sorted, right_sorted)

ETURN array_sorted




= TN, TRy
Master Method Tle) ( %)* (f% \

“Black Box” for solving recurrences

Assumes all subproblems are of (most algorithms do this)
* The same amount of data is given to each recursive call

An algorithm that splits the subproblems into 1/3 and 2/3 (or an algorithm
that splits data randomly) must be in a different manner. We'll look at
other methods later



Master Method Recurrence Equation
O
O

T(n) : total amount of operations QQ)Y\%’\ Cm'\V/
: recursive calls (# of subproblems), always >=1

T(n) < T(n/ )+0(n )

. fraction of input size (shrinkage), always > 1
. extra work needed to combine, always >=0

What does zero mean for d?



Master Method Cases

T(n) <a T(n/b) + 0(n%)

O(n’lgn), a=D0n"
T(n) = 0(n?), a < b
0(n'o9r®), a > b



Master Method Cases

T(n) <a T(n/b) + 0(n%)

O(n“lgn), a=>0" case1

T(n) = O(n”), a<b® case2

O(nlogba)’ a > h? Case 3




Exercise

Merge sort
) ¢ 2 T(5)+ On)

Q\Z’Z/\O:'Z (C&:\

S 2\ .-}/CQSC,\

O(n g n)

T(n) <a T(n/b) + 0(n%)

T(n) : total amount of operations
a :recursive calls (# of subproblems), always >= 1
b :fraction of input size (shrinkage), always > 1

d :extra work needed to combine, always >=0

( O(n?lgn), a=>h"

T(n) = o(n?), a<bh?

o(ni099), 0> he
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T(n) <a T(n/b) + 0(n%)

\g= ‘9" [ | SorkAl Ay

Exercise

Binary search \ @ T(n) : total amount of operations
T(. (\) Z I \ (-5-3 -J(‘ O( a :recursive calls (# of subproblems), always >= 1
— b :fraction of input size (shrinkage), always > 1

& — \ \D . 2 d = O d :extra work needed to combine, always >=0
- '_" [

(
o 2 ‘OCK (O(ndlgn), a = b?
_ O Cose | I'(n) = o(n®),  a<pe
\ — ’2 — {O(nlogba)’ a > bd
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Exercise

Closest pair

(5

Me g€

Sy

)

T(n) < aT(n/ )+ 0(n%)

T(n) : total amount of operations
a :recursive calls (# of subproblems), always >= 1
: fraction of input size (shrinkage), always > 1

d :extra work needed to combine, always >=0

( O(n?lgn), a=>h"
T(n) = o(n%), a<b
K0(nlog a)’ a > d

14




Exercise

T(n) £2T(n/2) + O(n?)

(\ M

6= 2
A
2z

A

o\
case. €

T(ny= 0lr®)

T(n) <a T(n/b) + 0(n%)

T(n) : total amount of operations

a :recursive calls (# of subproblems), always >= 1

b :fraction of input size (shrinkage), always > 1

d :extra work needed to combine, always >=0

( O(n?lgn), a=>h"
0(n?), a < b?

o(ni099), 0> he
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Integer Multiplication

Input: Two n-digit nonnegative integers, x and y.

Output: The product x - y
z)
Assumptions: n is a power of 2 OC N

What is the time complexity using the “grade-school” algorithm.

123456789
x 9876054321



Multiplication () 1\ (@) T
FUNCTION RecursivelntMultéx, y)j ,{\/C\“a‘)( What is the recurrence?

Constant | T 5 - 1, RETORN x ¢ TC 1’\) £ LT C | / 13 -+ O< I\\ 3

a, b = SplitIntInt@(x) .
Constant

c, d = SplitIntIntoHalves (y)

ac = RecursiveIntMult (a, c)

ad = RecursiveIntMult (a, d) —_— :Zl
bc = RecursiveIntMult (b, c¢) b —

bd = RecursivelIntMult (b, d)

4

RETURN 10"n * ac

Linear + 10~ (n/2) * (ad + bc)

+ bd
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Multiplication

T(n) £4 T(n/2) + O(n)

o= U, b=z, d=\
¥ ) Zl-—-7 cose 3

OC Y\\OSZ’L\B
O( )

T(n) <a T(n/b) + 0(n%)

T(n) : total amount of operations
a :recursive calls (# of subproblems), always >= 1
b :fraction of input size (shrinkage), always > 1

d :extra work needed to combine, always >=0

( O(n?lgn), a=>h"
T(n) = o(n?), a<bh?
&O(nlogba), a > h*
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Karatsuba (guess the year)

FUNCTION RecursivelIntMult(x, V)
NumDigits (x)
RETURN x * vy

n:
IF n == 1,
a, b =
c, d =

SplitIntIntoHalves (x)
SplitIntIntoHalves (y)

= RecursivelIntMult (a, c¢)
ad = RecursiveIntMult (a, d)
bc = RecursiveIntMult (b, c¢)
bd = RecursiveIntMult (b, d)

RETURN 10"n * ac
+ 10" (n/2) *
+ bd

(ad + Dbc)

1960!

n:
IF n

a, b =
c, d =

p = a
q = cC

ac =
bd =

rg =
adbc =

RETURN
+
_|_

FUNCTION Karatsuba (x, V)
NumDigits (x)

, RETURN x * vy

SplitIntIntoHalves (x)
SplitIntIntoHalves (y)

b
d

Karatsuba(a, c¢)
Karatsuba (b, d)

Karatsuba (p, qg)

pg - ac - bd

10"n * ac
10" (n/2)
bd

* adbc

19




Ka ratsubam

bc

ac =
ad =

( )
( )
= RecursivelIntMult (b, <)
bd = ( )

= SplitIntIntoHalves (x)
= SplitIntIntoHalves (y)

RecursivelIntMult
RecursivelIntMult

a, c
a, d

RecursivelIntMult (b, d

RETURN 10"n * ac

+ 10~ (n/2) * (ad + bc)
+ bd

TURN x * y

a, b = SplitIntIntoHalves (x)
c, d = SplitIntIntoHalves (y)

p=a+b
qg=c¢ + d
ac = Karatsuba(a, <)

bd = Karatsuba (b, d)
pg = Karatsuba (p, Q9Q)
adbc = pg - ac - bd
RETURN 10"n * ac

+ 10"~ (n/2) * adbc
+ bd

20




Karatsuba

What is the recurrence?

=3 b= <

l

2 1

O n

d =

=) cose D

FUNCTION Karatsuba (x, V)

n:
IF n

a, b
c, d

p:
q:

ac =
bd =

pgq =

adbc

RETURN 10"™n * ac

NumDigits (x)

== 1, RETURN x * vy Constant

= SplitIntIntoHalves (x)
= SplitIntIntoHalves (y)

Constant

a )
Linear
C

+ b
+ d

Karatsuba (a, c¢)
Karatsuba (b, d)

Karatsuba (p, q)

= pgq - ac - bd | Linear

+ 10~ (n/2) * adbc Linear
+ bd

21



Karatsuba

2
T(n) <3 T(n/&) + O(n)

&:3 \OZQ{C\""—‘\

T(n) <a T(n/b) + 0(n%)

T(n) : total amount of operations
a :recursive calls (# of subproblems), always >= 1
b :fraction of input size (shrinkage), always > 1

d :extra work needed to combine, always >=0

( O(n?lgn), a=>h"
T(n) = o(n?), a<bh?
&O(nl"gba), a > h*

22




iterative Matrix Multiplication

1. FUNCTION IMM(X,Y)
/ = create_new_matrix(X.size, X.size)

FORIiIN [0 ..< X.size]
FORjIN [0 ..< X.size]

Z[i][j] += X[il[k] * Y[k][j]

Zij = XikYkj

1=

x‘
Il
[y

6(«\33

2
3
4
5.
6. FORKIN [0 .. < X.size] O
7.
8
S

RETURN Z

23




Recursive Matrix I\/Iultioliczation

n/2

ni2
Iy

1 FUNCTION RMM(X, Y) Z,,
2 IF X.size == n =
3 RETURN X * Y Zy Zy
4 . T
5. Z = create_new_matrix(X.size, X.size)
6
7 Z(1,1) = RMM(X(1,1), Y(1,1)) + RMM(X(1,2), Y(2,1)) # Upper left
8 Z(1,2) = RMM(X(1,1), Y(1,2)) + RMM(X(1,2), Y(2,2)) # Upper right
9. Z(2,1) = RMM(X(2,1), Y(1,1)) + RMM(X(2,2), Y(2,1)) # Lower left
10. Z(2,2) = RMM(X(2,1), Y(1,2)) + RMM(X(2,2), Y(2,2)) # Lower right
11.
12. RETURN Z Quadratic

Element-wise addition of matrices

O\"——'%/ b=2  d=2 .




Matrix Multiplication T < a T(%),) + 0(n)

Recursive matrix multiplication T(n) : total amount of operations

: recursive calls (# of subproblems), always >=1
: fraction of input size (shrinkage), always > 1

: extra work needed to combine, always >=0

@(&3

(O(n lgn),
T(n) = -« O(n ),
k0(nlog )’

V A




Strassen’s Matrix Multiplication

FUNCTION SMM(X, Y)
IF X.size ==
RETURN X * Y

Quadratic

(X(2,2), Y(2,1) - Y
(X(1,2) +X(2,2),

4) = X(2,2),
) = X(2,1),

Y(1,1) +Y(2,2))
Y(2,1) +Y(2,2))
Y(1,1) +Y(1,2))

12.
13.
14.
15.
16.
17.

,1)=PE+PD-PB + PF
,2) =PA +PB
,1)=PC+PD
,2) =PA + PE-PC- PG

a= F
\a":Z
=2

26




Exercise T(n) < T(n/ )+ o(n")

Strassen’s matrix multiplication T(n) : total amount of operations

T(n) <7 T(n/2) + O(nz) : recursive calls (# of subproblems), always >= 1
: fraction of input size (shrinkage), always > 1

: extra work needed to combine, always >=0

(O(n lgn),
T(n) = -« O(n ),
k0(nlog )’

V A




Master Method Proof

Does the Master Method actually work?

Assume A J
=1
* T(1) = 0(1) (thisis our base-case) L 2

*T(n) <aT(™/,)+ cn?
RSN Jo = el sl (NOt necessary, but makes the math easier)

 How did we analyze the running time of merge sort?

prekty |
Drew a5 picke © Tt

28



Generalizing the Recursion Tree Analysis

For merge sort
 What was the # number of subproblems for a given level L?
 What was the size of each of the subproblems at level L?
 How many total levels were there?



Merge Sort Exercise

1.How many sub-problems are there at level ‘L'? (Note: the top level is
‘Level 0’, the second level is ‘Level 1’, and the bottom level is ‘Level

log,(n))

2.Hc_>)w many elements are there for a given sub-problem found in level
‘L

3.How many computations are performed at a given level? (Note the cost
of a ‘merge’ operation was 21m)

4.\What is the total computational cost of merge sort?



Generalizing the Recursion Tree Analysis

In the general case
 What is the # number of subproblems for a given level L?
 What is the size of each of the subproblems at level L?
* How many total levels are there?

31



Level O

Level 1

ez @ @ @ @@ @@ @ @ © O o ©

32



How many sub-problems a

T
o (]
0 1

n/b  My]

@//\///\

ez @ @ @ @ @@ @@ @ @ O O O



How many elements for each problem at level L?

N =6 G

NECL;“'YD: N/ 0 n

n

L 4

3

ez @ @ @ @ @@ @@ @ @ O O O



How much work is done outside of recursion?

e ol
to A

e ———

d

n/b )
N4

el

C\

N4
(j]ﬂoLB

ez @ @ @ @ @@ @@ @ @ O O O

35



What is the total work done at level L?

W =

d

n/b

7\
l//

¥
I

I I I ¢ I -
—

e

P T —
@ ¢ ¢ ¢ ¢ ¢ ¢ & o o o

Le <I logyn

Z\ ™



L=, b= A=
What is the total work done at level [ ?

Work at (any) Level L T



What is the total work done

Work at (any) Level L
aLC(n/bL)d

Rewrite to group together terms dependent on level
d L
tn (a/bd)



What is the total work done

Work at (any) Level L
aLC(n/bL)d

Rewrite to group together terms dependent on level
d L
tn (a/bd)

(O(n lgn),
T(n) = A« O(n ),
kO(nlog )’

V. A




What is the total work done for the tree?

Work at (any) Level L

aLC(n/bL)d
Rewrite to group together terms dependent on levell I ve I
Cnd (a/bd)L I I I I
@ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o

Work done for the entire tree
logpn

T < end Y (/)"

L=0

40



Work done by a recursive algorithm™

*With an equal number of elements in each subproblem.

T(M = ot + o)




Let’s look at the cases again <

What happens when

a = b“ : work stays roughly the same at each level

O(work at each level * number of levels)

a < b : work goes down at each level

O(work done at the root)

a > h“ : work goes up at each level

O(work done at the leaves)




Review

: From where do
 We have three difference of trees ,
1. Work is similar at each level we get the cases:

2. Work decreases at each level
3. Work increases at each level

e These tree lead to our three cases for the Master Method
 What really matters is the ratio between a and

( O(n Ig n), Case 1
T(n) = A« O(n ), < Case 2
\ 0(nto9r2), > Case 3




bd?
A few helpers av

:1—r

log,(n) = ) = log (n)/ log,(n) = 0(log, (n)) for all values of a > 1

44



Proving the Master Method: Case 1:a = b
1

p——

7

A 7 I

k —
o Zlogbn(l)L 2. Yi—ol=k+1

cn’(log,n + 1) /(/nq lOfﬁ D "‘f}(

Claim: T(n) = 0(n“ Ign)




cn(logyn + 1) = 0(n?1gn)

Om y N oW,



Master Method

T(n) < T(n/ )+O(n )

0(n”1gn),
T(n) = { 0(n?),

0(n'o9r®),

vV A



Proving the Master Method:

@ﬁéndz“)g /" L a<be

@ 2. Y& 1t i @1

r—1

0, D08 n+ 3. Multiply top and bottom by -1

CTl

L 16, DoEr ™)
cn

1-(%/, &)

49



Proving the Master Method:

T(n) <

cn

cn

cn

cn

M CADL
Zlog n(/ )L

(/ )log n+i_4q

k -
2. i—o 7 —

"/, a)-1

1_(/ )log n+1

1-("/, )

1. a<b?

Tk+1—1

r—1

3. Multiply top and bottom by -1

4. We can remove the complex

term from the numerator and
keep the original inequality



Proving the Master Method:

What can we say about this term?

1 /. a 1s constant with respect to n

T(n) < cn .

cn‘c,

Claim: T(n) = 0(n%)



cnc, = 0(n?)



Master Method

T(n) < T(n/ )+O(n )

0(n”1gn),
T(n) = { 0(n?),

0(n'o9r®),

vV A



L —\—C—Z/\E]Uﬁ%- C-%r\ + C'bﬁ('ﬁz"hj‘ Cs 1
Proving the Master Method: Case 3: a > b

T(n) < cn” Zlogbn(a/bd)L 1. a > b? M

d logbn I 2. Last term of summation is
cn Z (a/bd)

IOW)

asymptotically largest:

\ a o log,n
C f\d ((%,O + (%d\u t ﬁ%ﬂé\)l@i e (%ﬂ\ b)




Proving the Master Method: Case 3: a > b

T(Tl)< cn Zlog n( / )L 1. Cl>bd

2. Last term of summation is

cnd Y090y N

asymptotically largest:

LI e




Xlog‘jbf{%

Proving the Master Method: Case 3: a > b

d
T(n) < cn’ Zlog n(a/ d)L 1. a>b

2. Last term of summation is

CTld Zlog n(a/ d)L

asymptotically largest:
(a/ d)log n

3. Distribute the exponent and

simplify

oG, N
— C\O\ Sb

56



Proving the Master Method: Case 3: a > b

d
T(Tl)< cn Zlog n( / )L 1. a>b
2. Last term of summation is

cnd Y090y N

asymptotically largest:
cin”(“/ )log " (% )log n

Cq 1°g§ 3. Distribute the exponent and
simplify

Claim: T(n) = 0(n'°9r%) \C)Ej s
b



On

Calogb n _— O(nlogba)

\/ OuT

OLN.
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Master Method Summary
T(n) @T(n@ + O(rQ

T(n) : total amount of operations

1. We analyzed a generalized recursion tree

2. Counted the amount of work done at each level
: recursive calls (# of subproblems), always >=1

3. Counted the amount of work done by the tree . fraction of input size (shrinkage), always > 1

4. Found that we have three different types of trees : extra work needed to combine, always >=0

1. Same rate throughout (case 1: a = bd)

2. Root dominates (case 2: a < b9) ( 0 (n ]g n)’ =

3. Leaves dominate (case 3: a > bY) T(Tl) = 0 (Tl )’ <

5. Saw that these trees relate to the difference master 0 (nlog ), >
method cases \
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