Loop Invariants

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Some asymptotic complexity review
- Practice writing loop invariants

Exercise

Loop Invariant

Extra Resources

• Chapter 2 of Introduction to Algorithms, Third Edition

Loop Invariant Proofs (Web Archive)

$$X = 1$$

while $X < n$:

... V constant work

 $X = X \cdot Z$
 $O()$?

$$T_1 = |7n|$$
 $T_2 = |4n| lg n$

Use base 10

Loop Invariant Proofs

A procedural way to prove the correctness of some code with a loop

Very similar to inductive proofs for recursive algorithms

Don H actually care about FUNCTION SumArray(array) proving this

Example

```
sum = 0
i = 0
WHILE i < array.length
sum = sum + array[i]
i = i + 1</pre>
```

How do we prove that this code sums all values in the given array?

Some useful syntax:

- array[start ..= end] is the subarray
 - Including array[start], array[end], and everything in between
 - <u>Inclusive</u> lower and upper bounds
- array[start ..< end] is the subarray
 - Including array[start], excluding array[end], and including everything in between
 - Inclusive lower bound, exclusive upper bound

Loop Invariants

A loop invariant is a <u>predicate</u> (a statement that is either true or false) with the following properties/conditions:

1. It is true upon entering the loop the first time.

Initialization

- 2. If it is true upon starting an iteration of the loop, it remains true upon starting the next iteration.

 Maintenance
- 3. The loop terminates, and the loop invariant plus the reason that the loop terminates gives you the property that you want.

 Termination

Relation to Induction Proofs

Loop Invariant

 Initialization: true before entering first iteration

• <u>Maintenance</u>: true after executing any iteration

• <u>Termination</u>: true after the final iteration

Induction

 Base case: true when acting on the smallest input

 Inductive hypothesis: assume true for smaller inputs

 Inductive step: true after executing on current input

Relation to Induction Proofs

Loop Invariant

 Initialization: true before entering first iteration

• <u>Maintenance</u>: true after executing any iteration

• <u>Termination</u>: true after the final iteration

Induction

 Base case: true when acting on the smallest input

 Inductive hypothesis: assume true for smaller inputs

• <u>Inductive step</u>: true after executing on current input

How to perform a proof by loop invariant

- 1. State the loop invariant
 - 1. A statement that can be easily proven true or false
 - 2. The statement must reference the purpose of the loop
 - 3. The statement must reference variables that change each iteration

Initialization

2. Show that the loop invariant is true before the loop starts

Maintenance

- 3. Show that the loop invariant holds when executing any iteration
- 4. Show that the loop invariant holds once the loop ends | Termination

Loop Invariant

```
At the start of the iteration with <reference the looping variable>, the <reference to partial solution> <something about why the partial solution is correct>.
```

Using Insertion Sort as example.

At the start of the iteration with index j,

```
the subarray [0 ..= j-1] consists of the elements originally in array[0 ..= j-1]
```

rearranged into nondecreasing order.

```
FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length
sum = sum + array[i]
i = i + 1</pre>
```

- 1. State the loop invariant
 - 1. A statement that can be easily proven true or false
 - 2. The statement must reference the purpose of the loop
 - The statement must reference variables that change each iteration

Exercise

```
i
Sum
array
```

FUNCTION SumArray(array)

```
sum = 0
i = 0
WHILE i < array.length
sum = sum + array[i]
i = i + 1</pre>
```

- 1. State the loop invariant
 - L. A statement that can be easily proven true or false
 - 2. The statement must reference the purpose of the loop
 - . The statement must reference variables that change each iteration

What would be a bad loop invariant for proving this procedure?

What would be a good loop invariant for proving this procedure?

FUNCTION SumArray(array)

```
sum = 0
i = 0
WHILE i < array.length
sum = sum + array[i]
i = i + 1</pre>
```

- 1. State the loop invariant
 - 1. A statement that can be easily proven true or false
 - 2. The statement must reference the purpose of the loop
 - The statement must reference variables that change each iteration

Loop Invariant

At the start of the iteration with index i, the variable sum is the sum of all values in the subarray array [0 . . < i].

```
FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length
sum = sum + array[i]
i = i + 1</pre>
```

At the start of the iteration with index i, the variable sum is the sum of all values in the subarray array[0 ... < i].

- 1. Initialization
- 2. Maintenance
- 3. Termination

```
FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length
sum = sum + array[i]
i = i + 1</pre>
```

At the start of the iteration with index i, the variable sum is the sum of all values in the subarray array[0 ... < i].

Initialization:

Upon entering the first iteration, i = 0. There are no numbers in the subarray array [0 . . < i]. The sum of no terms is the identity for addition (0).

```
FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length
sum = sum + array[i]
i = i + 1</pre>
```


At the start of the iteration with index i, the variable sum is the sum of all values in the subarray array[0 ... < i].

Maintenance:

Upon entering an iteration with index i, assume that sum is equal to the sum of all values in the subarray array [0 . . < i]:

$$sum = \sum_{k=0}^{i-1} array[k]$$

The current iteration adds

array[i] to sum and then
increments i, so that the loop
invariant holds upon entering the
next iteration.

FUNCTION SumArray(array)

```
sum = 0
i = 0
WHILE i < array.length
sum = sum + array[i]
i = i + 1</pre>
```

At the start of the iteration with index i, the variable sum is the sum of all values in the subarray array [0 ..< i].

Termination:

The loop terminates with i = n. According to the loop invariant, sum is equal to the sum of all values in the subarray array [0 ..< i]:

$$sum = \sum_{k=0}^{i-1} array[k] = \sum_{k=0}^{n-1} array[k]$$

which is the sum of all values in the array.

```
FUNCTION SumArray(array)
 sum = 0
 i = 0
 WHILE i < array.length
   sum = sum + array[i]
   i = i + 1
```

At the start of the iteration with index i, the variable sum is the sum of all values in the subarray array[0 ..< i].</pre>

- Initialization
- Maintenance
- **Termination** 3.

A more complex example: Dijkstra's Algorithm

```
DIJKSTRA (G, w, s)
  S = null
  Q = G.V
  while Q is not null
     u = EXTRACT-MIN(Q)
     S = S union \{u\}
     for each vertex v adjacent to u
       RELAX(U, V, W)
```

Loop Invariant:

At the start of each iteration of the while loop, v.d = delta(s, v) for each vertex v in S.

Dijkstra's Algorithm

```
DIJKSTRA (G, w, s)
  S = null
  Q = G.V
  while Q is not null
     u = Extract-Min(Q)
     S = S union \{u\}
     for each vertex v adjacent to u
       RELAX(U, V, W)
```

Loop Invariant:

At the start of each iteration of the while loop, v.d = delta(s, v) for each vertex v in S.

Initialization:

Initially, S = null and so the invariant is trivially true

Dijkstra's Algorithm

```
DIJKSTRA (G, w, s)
  S = null
  Q = G.V
  while Q is not null
     u = Extract-Min(Q)
     S = S union \{u\}
     for each vertex v adjacent to u
       RELAX(U, V, W)
```

Loop Invariant:

At the start of each iteration of the while loop, v.d = delta(s, v) for each vertex v in S.

Maintenance:

<long proof by contradiction on</pre> page 661 of Cormen>

Dijkstra's Algorithm

```
DIJKSTRA (G, w, s)
  S = null
  Q = G.V
  while Q is not null
     u = Extract-Min(Q)
     S = S union \{u\}
     for each vertex v adjacent to u
```

RELAX(U, V, W)

Loop Invariant:

At the start of each iteration of the while loop, v.d = delta(s, v) for each vertex v in S.

Termination:

At termination, Q = null which, along with our earlier invariant that Q = V - S, implies that S = V. Thus, u.d = delta(s, u) for all vertices in G.V.

Practice (Running Time and Loop Invariants)

```
FUNCTION NaiveExponentiation(x, n)
IF n == 0
    RETURN 1
result = 1
FOR i IN [0 ..< n]
    result = result * x
RETURN result</pre>
```

```
FUNCTION FastExponentiation(x, n)
  result = 1
  a = x
WHILE n != 0
  r = n % 2
  IF r == 1, result = result * a
  n = n // 2
  a = a * a

RETURN result.
```