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o Can work with anyone

o Coding + paper (two separate submissions)

BINARY SEARCH TREES

David Kauchak
CS 140 — Spring 2024

Stock market problem Binary Search Trees
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Binary Search Trees

BST — A binary tree where a parent’s value is greater than all
values in the left subtree and less than or equal to all the values in
the right subtree

leftTree(i) <i < rightTree(i)
and the left and right children are also binary search trees

Why not?

leftTree(i) =i < rightTree(i)

Ambiguous about where elements that are equal would reside

Example
=

Can be implemented with with
references or an array

5 6
2
What else can we conclude? Another example: the solo tree
e e
leftTree(i) <i <rightTree(i) @
The smallest element is the left-
most element
The largest element is the right-
most element
7 8
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Another example: the twig Operations
| |
Search(Tk) — Does value k exist in tree T
e Insert(T,k) — Insert value k into tree T

Delete(T,x) — Delete node x from tree T
e Minimum(T) — What is the smallest value in the tree?
Maximum(T) — What is the largest value in the tree?
Successor(T,x) — What is the next element in sorted order after x
Predecessor(T,x) — What is the previous element in sorted order of x
Median(T) — return the median of the values in tree T

3 10

Search Finding an element
| =

How do we find an element? Search(T, 9)

BSTSEARCH(z, k)

1 ifz=nullork==x

2 return x

3 elseif k <z

4 return BSTSEARCH(LEFT(x), k)

5 else BSTSEARCH(z, k)

6 return BSTSEARCH(RIGHT(x), k) fo=mdlork=s
elseif k <z

return BSTSEARCH(LEFT(x), k)
else

@ o oo

return BSTSEARCH(RIGHT(x), k)

11 12
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Finding an element

|
Search(T, 9)

BSTSrARCH(z, k)

ife=nulork=2x
return x

return BSTSEARCH(LEFT(x), k)

1

2

3 elseif k <z
4

5 else

6

return BSTSEARCH(RIGHT(x), k)

Finding an element

|
Search(T, 9)

BSTSraRcH(z, k) 9>12?
ifo=nulork=z
return x

return BSTSEARCH(LEFT(x), k)

1

2

3 elseif k <z
1

5 else

6

return BSTSEARCH(RIGHT(x), k)

13

14

Finding an element

|
Search(T, 9)

BSTSEARCH(z, k)
fo=nulork=z
return x
elseif k <z
return BSTSEARCH(LEFT(x), k)

else

@ o oo

return BSTSEARGCH(RIGHT(x), k)

Finding an element

|
Search(T, 9)

BSTSEARCH(z, k)
if o =null or b
return x
elseif k <z
return BSTSEARCH(LEFT(x), k)
else

@ o oo

return BSTSEARCH(RIGHT(x), k)

15
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Finding an element

|
Search(T, 9)

BSTSraRcH(z, k)

1 ifz=nullork=2

2 return x

3 elseif k <z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSEARCH(RIGHT(x), k)

Finding an element

|
Search(T, 13)

BSTSraRcH(z, k)
1 ife=nulork=z

2 return x

3 elseif k<a

4 return BSTSEARCH(LEFT(x), k)
5

6

else
return BSTSEARCH(RIGHT(x), k)

17

18

Finding an element

| ]
Search(T, 13)

BSTSEARCH(z, k)
fo=nulork=z
return x
elseif k <z
return BSTSEARCH(LEFT(x), k)

else

@ o oo

return BSTSEARGCH(RIGHT(x), k)

Finding an element

| ]
Search(T, 13)

BSTSEARCH(z, k)
if o =null or b
return x
elseif k <z
return BSTSEARCH(LEFT(x), k)
else

@ o oo

return BSTSEARCH(RIGHT(x), k)

19
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lterative search Running time of BSTSearch
| |
ITERATIVEBSTSEARCH(z, k)
2
1 while z # null and k # 2 Worst case?
2 fhk<z O(height of the tree)
3 z «— LEFT(z)
4 else
5 z + RIGHT(z) Average case?
6 't
reurn @ Olheight of the tree)
BSTSEARCH(z, k)
1 ifz=nullork=z Best case?
2 return x
3 elseif k <z o
4 return BSTSEARCH(LEFT(x), k)
5 else
6 return BSTSEARCH(RIGHT(x), k)
21 23
Height of the tree Insertion
| ) | )
ight?
Worst :qse height? Search and then insert when you find a “null” spot in the tree
n-
“the twig”
Best case height?
llogzn]
complete (or near complete) binary tree
Average case height?
Depends on two things:
u the data
= how we build the tree!
24 25
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Insertion Inserting duplicates
| ] | ]
BSTINSERT(T, )
1 if RoOT(T) = null Insert(T, 14)
2 RoOT(T) « z
3 else
4 y « RoOT(T)
5 while y # null
6 prev ey
7 ifz<y
8 y «— LEFT(y)
9 else
10 y < RIGHT(y)
11 PARENT(z) « prev
12 if z < prev
13 LEFT(prev) — z
14 else
15 RIGHT(prev) «— z . . . . .
leftTree(i) < i =<rightTree(i)
26 33
Inserting duplicates Running time
| |
Insert(T, 14) Search and then insert when you find a “null” spot in the tree
O(height of the tree)
leftTree(i) <i < rightTree(i)
35
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Running time Running time
| |
Search and then insert when you find a “null” spot in the tree Insert(T, 15) e
O(height of the tree) e

Why not O(height of the tree)?

36 37
Height of the tree Height of the tree
| ) | )
Worst case: “the twig” — When will this happen? Best case: “complete” — When will this happen?
Search and then insert when you find a “null” spot in the tree Search and then insert when you find a “null” spot in the tree
38 39
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Height of the tree
=

Average case for random data?
Search and then insert when you find a “null” spot in the tree
Randomly inserting data into

a BST generates a tree on
average that is O(log n)

Min/Max

|
BSTMin(z) ITERATIVEBSTMIN(z)
1 if LEFT(2) = null 1 while LEFT(x) # null
2 return 2 z — LEFT(z)
3 else 3 return x
4 return BSTMIN(LEFT(x))

40 57
Running time of min/max? Successor and predecessor
| ) |
BSTMin(z) IreRATIVEBSTMIN(z) Predecessor(12)? 9
1 Lerr(e) — null 1 while LEFT(x) # null
2 return = 2 o — Lert(a)
3 else 3 return x
1 return BSTMIN(LEFT(z))
Of(height of the tree) 0
58 59



Successor and predecessor Successor
| |
Predecessor in general?  largest node of all those Successor(12)? 13
smaller than this node
rightmost element of
the left subtree e
60 61
Successor Successor
| ) | )
Successor in general? smallest node of all those What if the node smallest node of all those
larger than this node doesn’t have a right larger than this node
subtree?
leftmost element of the leftmost element of the
right subtree right subtree
62 63
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Successor

What if the node
doesn’t have a right
subtree?

node is the largest

the successor is the node
that has x as a
predecessor

Successor
=

successor is the node
that has x as a
predecessor

64 65
Successor Successor
| ) | )
successor is the node successor is the node
that has x as a that has x as a
predecessor predecessor
66 67

11
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Successor Successor
| |
keep going up until .
we're no longer a successor is the node SUCCESSOR(z)
right child that has x as a 1 if RIGHT(z) # null
predecessor 2 return BSTMIN(RIGHT(z))
3 else
4 y < PARENT(z)
5 while y # null and z = RIGHT(y)
6 Tey
7 y < PARENT(y)
8 returny
68 69
Successor Successor
| ) | )
SUCCESSOR(z) if we have a right SUCCESSOR(z) find the node that x is
1 if RicHT(z) £ null subtree, return the 1 if RicHT(z) # null the predecessor of
return BSTMIN(RIGHT(z)) smallest of the right 2 return BSTMIN(RIGHT(z))
3 else subtree 3 else
4 y < PARENT(z) 4 y < PARENT(z) keep going up until
5 while y # null and z = RIGHT(y) 5 while y # null and z = RIGHT(y) we're no longer a
6 Ty 6 Ty right child
7 y < PARENT(y) 7 y < PARENT(y)
8 returny 8 returny
70 71

12
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Successor running time

Of(height of the tree)

SUCCESSOR(z)

1 if RIGHT(z) # null

2 return BSTMIN(RIGHT(z))

3 else

4 y « PARENT(z)

5 while y # null and z = RIGHT(y)
6 Ty

7 y < PARENT(y)

8 returny

Deletion

Three cases!

72

73

Deletion: case 1 Deletion: case 1
| ) | )
No children
No children
Just delete the node
Just delete the node
74 75

13
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Deletion: case 2
One child

Splice out the node

Deletion: case 2
One child

Splice out the node

76

77

Deletion: case 3
Two children

Replace x with it’s successor

Deletion: case 3

Two children

Replace x with it's successor

78

79
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Deletion: case 3
=

Two children
Will we always have a successor?

Why successor?
Larger than the left subtree

Less than or equal to right subtree

Height of the tree

Most of the operations take time
O(height of the tree)

We said trees built from random data have height
O(log n), which is asymptotically tight

Two problems:
We can't always insure random data
What happens when we delete nodes and insert others
after building a tree?

80 81
Balanced trees Red-black trees: BST (plus some)
| ) | )
Make sure that the trees remain balanced! every node is either red or black
Red-black trees root is black
leaves (NIL) are black
AVL trees if a node is red, both children are black
2-3-4 trees for every node, all paths from the node to descendant leaves
e contain the same number of black nodes.
B-trees
jki/Rec-blocl free|
82 83
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Red-black trees: BST (plus some)

every node is either red or black

root is black

leaves (NIL) are black

if a node is red, both children are black

for every node, all paths from the node to descendant leaves
contain the same number of black nodes.

h(x): height of node X: number of edges in longest path
from x to a leaf

Red-black trees: BST (plus some)
=

h(x): height of node X: number of edges in longest path
from x to a leaf

What is the height of the root node?

84

85

Red-black trees: BST (plus some)

h(x): height of node X: number of edges in longest path
from x to a leaf

Red-black trees: BST (plus some)
e

every node is either red or black

root is black

leaves (NIL) are black

if a node is red, both children are black

for every node, all paths from the node to descendant leaves
contain the same number of black nodes.

bh(x): black height of node X: number of black nodes on a
path from x to leaf (not including x)

Why don’t we say "path with the most..."2

86

87
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Red-black trees: BST (plus some)
=

every node is either red or black

root is black

leaves (NIL) are black

if a node is red, both children are black

for every node, all paths from the node to descendant leaves
contain the same number of black nodes.

bh(x): black height of node X: number of black nodes on a
path from x to leaf (not including x)

Why don’t we say "path with the most...”2

Red-black trees: BST (plus some)

bh(x): black height of node X: number of black nodes on a
path from x to leaf (not including x)

What is the black height of the root node?

88

89

Red-black trees: BST (plus some)
e

bh(x): black height of node X: number of black nodes on a
path from x to leaf (not including x)

Bounding the height

every node is either red or black h(x): height of node x: number of edges in

root is black longest path from X to a leaf
leaves (NIL) are black

Dbh(x): black height of node x: number of
black nodes on a path from x to leaf (not
including x)

i @ node is red, both children are black

for every node, all paths from the node to
descendant leaves contain the same number of
black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

Proof?

90

91
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Bounding the height
=

(x): height of node x: number of edlges in
longest path from X o  leaf

root is black
leaves (NIL) are black

bh(x): black height of node x: number of
black nodes on a path from x to leaf (not

if o node is red, both children are black
ode, al s The node o !
descendant leaves contain the same number of  including x)

black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

Worst case: nodes alternate red/black
- root is black
- leaf is black

In terms of h(x): How many black nodes are
there on this path?

Bounding the height
=

(x): height of node x: number of edlges in
longest path from X o  leaf

root is black

leaves (NIL) are black
bh(x): black height of node x: number of

black nodes on a path from x to leaf (not
including x)

if a node is red, both children are black

ode, al s The node fo
descendant leaves contain the same number of
black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

Worst case: nodes alternate red/black L
- root is black °
- leaf is black [ )
°
]

92

93

Bounding the height
=

every node is either red or black h(x): height of node x: number of edges in

longest path from X fo a leaf

root is black

leaves (NIL) are black
Dh(x): black height of node x: number of

black nodes on a path from x to leaf (not
including x)

if @ node is red, both children are black

<, all paths o
descendant leaves contain the same number of
black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

Worst case: nodes alternate red/black L]
- root is black [
- leaf is black [ )

bh(x) = h(x)/2
(Note thatt bh dloes not include the root)

Bounding the height
=

every node is either red or black h(x): height of node x: number of edges in

longest path from X fo @ leaf

root is black

leaves (NIL) are black
Dh(x): black height of node x: number of

black nodes on a path from x to leaf (not
including x)

if @ node is red, both children are black

<, all paths o
descendant leaves contain the same number of
black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

Worst case: nodes alternate red/black L]
- root is black [
- leaf is black [ )

bh(x) = h(x)/2
We can remove red nodes, but
that would decrease h(x) u

94

95
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Bounding the height Structural induction
| ] | ]
Claim 2: The subtree rooted at any node x contains at
bh(x) — 1 j -
least 2 1 internal (non-leaf) nodes Want to prove something about
recursive structure (e.g., a tree)
Proof?
96 97
Structural induction Structural induction
| ) | )

Proof by induction:
IH: Assume the property holds for

sub-structures (i.e., subtrees)
Show that it holds for the entire tree

Base case is often the smallest
structure possible (e.g., a leaf)

JANIVAN

98

99
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Bounding the height
=

Claim 2: The subtree rooted at any node x contains at
least 2P7X) — 1 internal (non-leaf) nodes

Bounding the height
=

Claim 2: The subtree rooted at any node x contains at
least 2P7X) — 1 internal (non-leaf) nodes

Base case: Base case: leaf (h(x) = 0)
bh(x) = 0 bh(x): black height of node x:
number of black nodes on a path
20-1=0 from X to leaf (not including X)
100 101

Bounding the height
e

Claim 2: The subtree rooted at any node x contains at
least 267 — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0

IH: Assume 2210 — 1 for all y that are subfrees of x

What is bh(child (x)) wrt bh(x)2

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

Bounding the height
e

Claim 2: The subtree rooted at any node x contains at
least 267 — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0

IH: Assume 220 — 1 for all y that are subfrees of x

x is red: bh(child(x)) = bh(x) — 1

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

102

103

20



Bounding the height

x is red: bh(child(x)) =7

bh(child(x)) bh(child(x))

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

Bounding the height
=

x is red: bh(child(x)) = bh(x) — 1

bh(child(x)) @ @ bh(child(x))

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

104

105

Bounding the height

x is black: bh(child(x)) =?

bh(child(x)) bh(child(x))

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

Bounding the height
e

x is black: bh(child(x)) = bh(x) or bh(x) — 1

bh(child(x)) @) @ h(chid) @ @ 1h(child(x))

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

106

107
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Bounding the height
=

Claim 2: The subtree rooted at any node x contains at
least 2P7X) — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0

IH: Assume 2°"0) — 1 for all y that are subfrees of x

x is red: bh(child(x)) = bh(x) — 1
x is black: bh(child(x)) = bh(x) or bh(x) — 1

bh(child(x)) = bh(x) — 1

Bounding the height
| ]
Claim 2: The subtree rooted at any node x contains at
least 2P7X) — 1 internal (non-leaf) nodes
Inductive case: h(x) > 0
IH: Assume 2P"0) — 1 for all y that are subtrees of x
bh(child(x)) = bh(x) —1
X

How many (internal
nodes are in this
tree (at least)?

108

109

Bounding the height
e

Claim 2: The subtree rooted at any node x contains at
least 267 — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0

IH: Assume 2210 — 1 for all y that are subfrees of x

bh(child(x)) = bh(x) —1

x )1

2bh()-1 _ q 2bh(x)-1 _ 1

Bounding the height
e

Claim 2: The subtree rooted at any node x contains at
least 267 — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0
IH: Assume 220 — 1 for all y that are subfrees of x

bh(child(x)) = bh(x) —1

(2= 1) 4 (20hGI1 1) + 1 = 2bh() _ 1

110

111
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Bounding the height (almost there!)
=

h
Claim 1: For every node x, bh(x) S%)

Claim 2: The subtree rooted at any node X contains at
least 222(*) — 1 internal (non-leaf) nodes

How does this help us?

Bounding the height

h
Claim 1: For every node x, bh(x) 2%)

Claim 2: The subtree rooted at any node X contains at
least 22(*) — 1 internal (non-leaf) nodes

n >2bh() —1 Claim 2

n >20@2 _q Claim 1
n+1 2 20@2 math
h(x) < 2log(n + 1) math

What does this mean?

112

113

Bounding the height

Can it be done?

| ) | )
every node is either red or black
root is black Can we maintain the red-black tree properties without
leaves (NIL} are black If we can maintain these making insertion and deletion more expensive?
9
i @ node is red, both children are black es: height O (1
for every node, all paths from the node to properties: height O (logn)
descendant leaves contain the same number of
black nodes. :
Search e © OBRO
Insert Right Rotation
e
These all become O(logn)
Delete o G Left Rotation
Maximum e e
[—— ki Tree.r . rotationpng
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A quick example Number guessing game
| |
I'm thinking of a number between 1 and n
You are trying to guess the answer
For each guess, I'll tell you “correct”, “higher” or “lower”
Describe an algorithm that minimizes the number of guesses
116 117
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https://www.youtube.com/watch?v=vDHFF4wjWYU

