

Another set data structure

2

Idea: store data in a collection of arrays

- array i has size 2ⁱ
- an array is either full or empty (never partially full)
- each array is stored in sorted order
- no relationship between arrays

Binary array set

Binary heap

A binary tree where the value of a parent is greater than or equal to the value of its children

Additional restriction: all levels of the tree are complete except the last, which is filled from left to

Max heap vs. min heap

3 4

5

7

Heapify Assume left and right children are heaps, turn current node into a valid heap Heapify(A,i) aka "sink" 1 $l \leftarrow \text{Lefr}(i)$ 2 $r \leftarrow \text{Right}(i)$ 3 $largest \leftarrow i$ 4 if $l \leq heap\text{-}size[A]$ and A[l] > A[i]5 $largest \leftarrow l$ 6 if $r \leq heap\text{-}size[A]$ and A[r] > A[largest]7 $largest \leftarrow r$ 8 if $largest \neq i$ 9 swap A[i] and A[largest]10 Heapify(A, largest)

```
Heapify
Assume left and right children are heaps,
turn current set into a valid heap
 \text{Heapify}(A, i)
  1 l \leftarrow \text{Left}(i)
  r \leftarrow \text{Right}(i)
                                                         find out which is
                                                        largest: current,
left of right
  3 \quad largest \leftarrow i
  4 if l \le heap\text{-}size[A] and A[l] > A[i]
                largest \leftarrow l
  6 if r \leq heap\text{-}size[A] and A[r] > A[largest]
                largest \leftarrow r
  8 if largest \neq i
                swap A[i] and A[largest]
 10
                Heapify(A, largest)
```

8

50

Building a heap For each element x in array: insert(x) Build-Heap1(A)1 copy A to B2 heap-size $[A] \leftarrow 0$ 3 for $i \leftarrow 1$ to length [B]4 INSERT (A, B[i])

51

52

76 77

78

Binomial Tree Bk has $\binom{k}{i}$ nodes at depth i. depth 0 depth 1 depth 4 В4 86

Another set data structure: recap Idea: store data in a collection of arrays array i has size 2ⁱ • an array is either full or empty (never partially full) • each array is stored in sorted order no relationship between arrays

Binomial Heap: Delete Min Delete node with minimum key in binomial heap H. Find root x with min key in root list of H, and delete H' ← broken binomial trees ■ H ← Union(H', H)

106 107

	Binary heap	Binomial heap	Fibonacci heap
Procedure	(worst-case)	(worst-case)	(amortized)
Build-Heap	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Insert	$\Theta(\log n)$	$O(\log n)$	$\Theta(1)$
MAXIMUM	$\Theta(1)$	$O(\log n)$	$\Theta(1)$
Extrac-Max	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$
Union	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)$
INCREASE-ELEMENT	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
DELETE	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$
(adapted from Figure 1	9.1, pg. 456 [1])	
Can we do bette	r?		