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Another set data structure : Binary heap :
Idea: store data in a collection of arrays A binary tree where the value of a parent is greater
» array i has size 2/ than or equal to the value of its children
o an array is either full or empty (never partially full)
« each array is stored in sorted order Additional restriction: all levels of the tree are
* no relationship between arrays complete except the last, which is filled from left to
right
Binary array set
Max heap vs. min heap
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Binary heap - operations
Max - return the largest element in the set

ExtractMax — Return and remove the largest element in the
set

Insert(val) — insert val into the set

IncreaseElement(x, val) — increase the value of element x
to val

BuildHeap(A) — build a heap from an array of elements

Binary heap representations
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Heapify

Assume left and right children are heaps,
turn current node into a valid heap

HEAPIFY(4,i) aka “sink”

| — LEFT(i)

r « RIGHT(3)

largest «— i

if I < heap-size[A] and A[l] > A[i]
largest — 1

if 7 < heap-size[A] and A[r] > Allargest]
largest «—r

if largest # i
swap A[i] and Aflargest]
HEAPIFY(A4, largest)
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Heapify

Assume left and right children are heaps,
turn current set into a valid heap

HEAPIFY(A, 1)

1 — LEFT(3)

7« RIGHT(4)

largest «— i

if I < heap-size[A] and A[l] > A[i]
largest — 1

if 7 < heap-size[A] and A[r] > Allargest]
largest —

if largest # i
swap A[i] and Allargest]
HEAPIFY(A, largest)

find out which is
largest: current,
left of right
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Heapify
Assume left and right children are heaps,
turn current set into a valid heap

HEAPIFY(A, 1)
1 [« LEFT(¢)
2 7« RIGHT(3)
3 largest — i
4 if I < heap-size[A] and A[l] > A[i]
5 largest — |
6 if 7 < heap-size[A] and A[r] > Allargest]
7 largest —r
8 if largest #1i if a child is
9 swap A[i] and Allargest] larger, swap and
0 HEAPIFY(A, largest) recurse

=

Heapify

Lol T T T T T T 1]

12 3 4 5 6 7 8 9 10

454

HEAPIFY(A, )

1 LEFT(3)

7 Ricat(i)

largest — i

if 1< heap-size[A] and All] > Ali]
largest «— 1

if 7 < heap-size[A] and Alr] > Allargest]
largest «— 1

if largest # i
swap Afi] and Aflargest)
HeAPIFY(A, largest)
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Heapify

IRl [ E T T T L]

12 3 4 5 6 7 8 9 10

HEAPIFY(A, i)

1~ Lerr(i)

7 RiGHT(i)

largest — i

if 1 < heap-size[4] and A[l] > Ali]

largest —
if r < heap-size[A] and Alr] > Allargest]

largest « r

T largest 7 i
swap Alil and Allargest]
HEAPIFY(A, largest)

Boolumo s won
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Heapify
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HEAPIFY(A, )

1 Ler(i)

7 RicuT(i)

largest — i

if 1 < heap-size[ ] and All] > Ali]
largest — 1

if r < heap-size[A] and Alr] > Allargest]
largest —r

T largest 7 ¢
swap Afi] and Allargest]
HEAPIFY(A, largest)
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Heapify

12 3 4 5 6 7 8 9 10

HEAPIFY(A, i)

Heapify

12 3 4 5 6 7 8 9 10

HEAPIFY(A, )

o 0 1 1 Ler1(i) 1 1 Ler1(i)
2 e Ricar(i) 2 1 Ricar(i)
3 largest — i 3 largest —i
4 if L < heap-size[A] and Al > Al 4 if U < heap-size[A] and Al] > Al
@ ° ° ° 5 largest — 1 5 largest — 1
6 i r < heap-size[A] and Alr] > Allargest) 6 i r < heap-size[A] and Afr] > Allargest]
7 largest —r 7 largest —r
8 if largest 71 8 if largest 71
9 swap Alil and Allargest] 9 swap Alil and Aflargest]
o 10 HEAPIFY(A, largest) 10 HeapIFy(A, largest)
13 14
Heapify Heapify
123 4567 89 10 123 4567 8 9 10
HEAPIFY(A,i) HEAPIFY(4, i)
o ° 1 1 Lert(i) ° o 1 1 Lert(i)
2 7 Riout() 2 e Riont()
3 largest —i 3 largest —i
4 f 1 < heap-size[A] and All] > A[] 4 if 1 < heap-size[] and All] > Ali]
o o ° 5 largest —1 ° ° ° 5 largest — 1
6 if r < heap-size[A] and Alr] > Allargest) 6 i r < heap-size[A] and Alr] > Aflargest]
7 largest —r 7 largest —r
8 W largest 7 § flargest 7
9 swap Alil and Allargest] 9 swap Alil and Allargest]
° 10 HEAPIFY(A, largest) o 10 HeAPIFY(4, largest)
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Running time of Heapify

O(height of the tree)

What is the height of the tree?
« Complete binary tree, except for the last level

HeAPIFY(d, i)

Binary heap - operations
Max - return the largest element in the set

ExtractMax — Return and remove the largest element in the
set

Insert(val) — insert val into the set

2 <n 1l Lerri) IncreaseElement(x, val) — increase the value of element x
- 5 fargt i to val
h<log,n s e ey 4l > 480
§ S hepabeld] en APl > Alergea] BuildHeap(A) — build a heap from an array of elements
8 i largest 71
O(log n) M e ot il
21 22
Max ExtractMax

What is the largest element in the set?

Return A[1]

1 e e R

12 3 4 5 6 7 8 9 10

Return and remove the largest element in the set

bbd

23

24



9/26/24

ExtractMax tH ExtractMax
Return and remove the largest element in the set Return and remove the largest element in the set
?
D (10)
O ® O
Gé g) @
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ExtractMax s IncreaseElement (aka swim up)| ::

Return and remove the largest element in the set Increase the value of element x to val

(10
O ® ®
L&
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IncreaseElement

Increase the value of element x to val

bbb

IncreaseElement

Increase the value of element x to val

&
bbb
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IncreaseElement :

Increase the value of element x to val

&
bbb

IncreaseElement

Increase the value of element x to val

bbb
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Insert
Insert val into the set

IncreaseElement
Increase the value of element x to val

a Runtime? e

° @ gtc}zgﬂnj‘ of tree) = ° @ @
OJONO -

¥ APeE
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Insert : Insert :
Insert val into the set Insert val into the set
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Insert
Insert val into the set

O(log n)

Building a heap

Can we build a heap using the functions we
have so far?

o Max

o ExtractMax

o Insert(val)

o IncreaseElement(x, val)

47
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Building a heap

For each element x in array:
insert(x)

BuiLp-HEAP1(A)

1 copy Ato B

2 heap-size[A] — 0

3 for i« 1 to length[B]

4 INSERT(A, Bli])

Running time of BuildHeap1

n calls to Insert — O(n log n)

Can we do better?

TR
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Building a heap: take 2

BuiLD-HEAP2(A)

1 heap-size[A] — (length)[A]
2 for i — |(length)[A]/2]tol
3 HEAPIFY(A, 1)

Start with n/2 “one-node” heaps
call Heapify on element n/2-1, n/2-2, n/2-3 ...

all children have smaller indices

building from the bottom up, makes sure that all the
children are heaps

BuiLD-HEAP2(A)

1 heap-size[A] — (length)[A]
2 for i — |(length)[A]/2]tol
3 HEAPIFY(A4, i)

12 3 4 5 6 7 8 9 10

&
bbb

53 54
BuiLp-HEAP2(A) BuiLp-HEAP2(A)
1 heap-size[A] — (length)[A] 1 heap-size[A] « (length)[A]
heapify 2 for i « |(length)[A]/2]tol heapify 2 for i — |(length)[A]/2]tol | &
3 HEAPIFY(A4, 1) 3 HEAPIFY(A, i)
12 3 456 7 8 9 10 12 3 45 6 7 8 9 10
55 56
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BuiLD-HEAP2(A)

1 heap-size[A] « (length)[A]
2 for i — |(length)[A]/2]tol
3 HEAPIFY(4, 1)

heapify

|
R I

12 3 4 5 6 7 8 9 10

BuiLD-HEAP2(A)

1 heap-size[A] — (length)[A]
2 for i — |(length)[A]/2]tol
3 HEAPIFY(A4, i)

heapify

|
EIEmEemEE L]

12 3 4 5 6 7 8 9 10

57 58
BuiLp-HEAP2(A) BuiLp-HEAP2(A)
1 heap-size[A] — (length)[A] 1 heap-size[A] — (length)[A]
heapify 2 for i « |(length)[4]/2]tol | & heapify 2 for i — |(length)[A]/2|tol | T
3 HEAPIFY(A4, 1) 3 HEAPIFY(A, i)
12 3 456 7 8 9 10 12 3 45 6 7 8 9 10
59 60
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BuILD-HEAP2(A)

|
[ [EE R 7R E EfEa L]

12 3 4 5 6 7 8 9 10

1 heap-size[A] «— (length)[A]
heapify 2 for i — |(length)[A]/2]tol
3 HEAPIFY(A4, 1)

BuiLD-HEAP2(A)

1 heap-size[A] — (length)[A]
heapify 2 for i — [(length)[A]/2]tol | 32

3 HEAPIFY(4, 1)

—

12 3 4 5 6 7 8 9 10

61
BuiLp-HEAP2(A)
- 1 heap-size[A] — (length)[4] . . . o
o R Sy i Running time of BuildHeap2 |:
n/2 calls to Heapify — O(n log n)
12 3 4 5 6 7 8 9 10
(1) Can we get a tighter bound?
0 @ BuiLD-HEAP2(A)
1 heap-size[A] — (length)[A]
o o o o 2 for i « |(length)[A]/2]tol
3 HEAPIFY(A, i)
63
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Nodes at height h

Running time is O(h)

h < ceil(n/2n+1) nodes
h=2 < ceil(n/8) nodes
h=1 < ceil(n/4) nodes
h=0 < ceil(n/2) nodes

Running time of BuildHeap2
W el

2
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Binary heaps

Binary heap

Procedure (worst-case)
BuiLp-HEAP O(n)
INSERT O(logn)
MAXIMUM o(1)
EXTRAC-MAX ©(logn)
UNION

INCREASE-ELEMENT ~ ©(logn)
DELETE O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Mergeable heaps

Binary heap
Procedure (worst-case)
BuiLp-HEAP O(n)
INSERT O(logn)
MAXIMUM o(1)
EXTRAC-MAX ©(logn)
UNION
INCREASE-ELEMENT ~ ©(logn)
DELETE ©(logn)

(adapted from Figure 19.1, pg. 456 [1])

- Mergeable heaps support
the union operation

- Allows us to combine two
heaps to get a single
heap

- Union runtime for binary
heaps?

74

75
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Union for binary heaps

Binary heap
Procedure (worst-case)
BuiLD-HEAP O(n)
INSERT ©O(logn)
MAXIMUM o(1)
E,’;IT:}‘:C'MAX e eloi o concatenate the arrays and
INCREASE-ELEMENT  ©(logn) then call Build-Heap
DELETE ©(logn)

(adapted from Figure 19.1, pg. 456 [1])

Linked-list heap
F—a—a—a—E—a

Store the elements in an unordered doubly linked list

Insert:

¢ Max:
Extract-Max:
Increase:
Union:

76
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Linked-list heap
OO0

Store the elements in an unordered doubly linked list

Insert:

add to the end/beginning
search through the linked list
search and delete

o Max:
Extract-Max:

increase value
concatenate linked lists

Increase:

Union:

Linked-list heap

Binary heap . :
Procedure (worst-case) Linked-list
BuiLp-HEAP O(n) o(n)
INSERT O(logn) o(1)
MaxiMum o(1) o(n)
EXTRAC-MAX O(logn) o(n)
UNION 8(n) o(1)
INCREASE-ELEMENT ~ ©(logn) o(1)
DELETE O(logn) o(1)

(adapted from Figure 19.1, pg. 456 [1])

Faster Union, Increase, Insert and Delete... but slower Max operations

78
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another binomial tree Bk-1

gt e

Adapted from: Bo Bk
Kevin Wayne _ o . .
Binomial Tree Binomial Tree
Bk
Bx: a binomial tree Bi-1 with the Number of nodes with
addition of a left child with respect to k? 000 Bo

N(Bo) = 1
N(Bk) = 2 N(Bk1) = 2

g e

[ ]
Bo
[ ]
Bo
80 81
Binomial Tree Binomial Tree
Bk Bk
Height? Degree of root node?
oo Bo caa Bo
H(Bo) =0
H(Bk) =1 + H(Bx1) =k k, each time we add another binomial tree
oAt M oAt M
Bo B1 B2 B3 Ba Bo B1 B2 B3 Ba
82 83
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Binomial Tree

Bk

What are the children
of the root? Bo

k binomial trees:
Bk-1, Bk2, ..., Bo

g e

Bo

Binomial Tree

Why is it called a binomial tree?

84

85

Binomial Tree

Bk has [k] nodes at depth i.

i

B4

Another set data structure:
recap

Idea: store data in a collection of arrays

array i has size 2/
an array is either full or empty (never partially full)
each array is stored in sorted order

no relationship between arrays

86

87
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Another set data structure:
recap

Which arrays are full and empty are based on the number of elements
« specifically, binary representation of the number of elements
© 4items = 100 = A2-full, A1-empty, Ao-empty
o 11items = 1011 = As-full, A2-empty, At-full, Ac-full
Ao: [5]
Ai:[4, 8]
A2: empty
As:[2,6,9,12,13, 16, 20, 25]

Lookup: binary search through each array
e« Worst case runtime?

Binomial Heap

Binomial heap V/uillemin, 1978
Sequence of binomial trees that satisfy binomial heap property:
each tree is min-heap ordered
top level: full or empty binomial tree of order k
which are empty or full is based on the number of elements

B1 Bo

88

89

Binomial Heap

Ao: [18]
A [3,7]

Az: empty

As: empty

As:[6, 8,29, 10, 44, 30, 23, 22, 48, 31, 17, 45, 32, 24, 55]

Binomial Heap: Properties

How many heaps?

O(log n) — binary number representation

B1

Bo

90

91
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Binomial Heap: Properties i
Where is the max/min?

Must be one of the
roots of the heaps

Binomial Heap: Properties g2
Runtime of max/min?

O(log n)

B1 Bo
92 93
Binomial Heap: Properties s Binomial Heap: Union 33
Height? H How can we merge two binomial tree heaps H
of the same size (2k)?
|ng n connect roots of H' and H"
- largest tree = Blog n choose smaller key to be root of H
- height of that tree is log n
Runtime?  O(1) 6
(® @ (9 @
@ @ @ e ®
@ @ @ ©)
®
94 95
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Binomial Heap: Union

Go through each tree size starting at 0 and merge as
we go

® g @
d e
+ ®
How can we combine/merge binomial LI
heaps (i.e. a combination of binomial 100 1
tree heaps)? 1947=26 + 0 0 1 1 1
96 97
Binomial Heap: Union Binomial Heap: Union i
5° &
® i ® ® i ®
e g6
+ © + ®

98
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102 103
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Binomial Heap: Union

Analogous to binary addition

Running time?
u Proportional to number of trees in root lists 2 O(logz N)
m O(log N)

19+7=26 + 0 0 1 1 1

Binomial Heap: Delete Min/Max

We can find the min/max in O(log n).
How can we extract it?

Hint: Bk consists of
binomial trees:

By-1, B2, -+, Bo

104

105

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
= Find root x with min key in root list of H, and delete
= H'« broken binomial trees
= H « Union(H", H)

Binomial Heap: Delete Min
Delete node with minimum key in binomial heap H.
= Find root x with min key in root list of H, and delete
= H'« broken binomial trees
= H <« Union(H', H)

0

I@ @
0@@0
@@@ ®

106

107
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Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
= Find root x with min key in root list of H, and delete
= H' <« broken binomial trees
= H « Union(H', H)

I ®
Union QQQQQ
9@@ ®

@

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
= Find root x with min key in root list of H, and delete
= H'<« broken binomial trees
= H « Union(H', H)

Running time?

O(log N)

108
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Heaps

Binary heap Binomial heap

Procedure (worst-case)  (worst-case)
BuiLD-HEAP O(n) O(n)
INSERT O(logn) O(logn)
MAXIMUM e(1) O(logn)
EXTRAC-MAX O(logn) O(logn)
UNION O(n) O(logn)
INCREASE-ELEMENT O(logn) ©O(logn)
DELETE O(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Fibonacci Heaps

Similar to binomial heap

- A Fibonacci heap consists of a sequence of heaps
More flexible

- Heaps do not have to be binomial trees

More complicated ©®

Min [H]

]
® o @ ® &
®0 ® 606

116

117
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Heaps

Binary heap Binomial heap Fibonacci heap

Procedure (worst-case)  (worst-case) (amortized)
BuiLD-HEAP O(n) O(n) O(n)
INSERT O(logn) O(logn) o(1)
MAXIMUM o(1) O(logn) o(1)
EXTRAC-MAX O(logn) O(logn) O(logn)
UNION O(n) O(logn) e(1)
INCREASE-ELEMENT O(logn) O(logn) e(1)
DELETE O(logn) O(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Should you always use a Fibonacci heap?

Heaps

Binary heap Binomial heap Fibonacci heap

Procedure (worst-case)  (worst-case) (amortized)
BuiLD-HEAP O(n) O(n) O(n)
INSERT ©O(logn) O(logn) e(1)
MAXIMUM o(1) O(logn) e(1)
EXTRAC-MAX O(log n) O(logn) O(logn)
UNION O(n) O(logn) e(1)
INCREASE-ELEMENT ~ ©(logn) O(logn) e(1)
DELETE O(logn) O(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

» Extract-Max and Delete are O(n) worst case
» Constants can be large on some of the operations
» Complicated to implement

118
Heaps
Binary heap Binomial heap Fibonacci heap

Procedure (worst-case)  (worst-case) (amortized)

[Buio-Hear O(n) O(n) O(n) |
INSERT ©(logn) O(logn) o)
MAXIMUM o(1) O(logn) (1)
EXTRAC-MAX O(logn) ©(logn) O(logn) |

LU_NION on) B(logn) o)
INCREASE-ELEMENT O(logn) O(logn) o(1)
DELETE O(logn) O(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Can we do better?

120
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