
9/24/24

1

Amortized Analysis
David Kauchak

cs140
Fall 2024

1

Admin
Assignment 3

2

Extensible array

Sequential locations in memory in linear order

Elements are accessed via index
l Access of particular indices is O(1)

Say we want to implement an array that supports add (i.e.
append)

l ArrayList in Java
l lists in Python, perl, Ruby, …

How can we do it?

3

Extensible array
Idea 1: Each time we call add, create a new array one
element larger, copy the data over and add the element

Running time: Θ(n)

4

9/24/24

2

Extensible array

Idea 2: Allocate extra, unused memory and save room to
add elements

For example: new ArrayList(2)

allocated for
actual array

extra space for
calls to add

5

Extensible array

Idea 2: Allocate extra, unused memory and save room to
add elements

Adding an item:

Running time: Θ(1) Problems?

6

Extensible array

Idea 2: Allocate extra, unused memory and save room to
add elements

How much extra space do we allocate?

Too little, and we might run out (e.g. add 15 items)

Too much, and we waste lots of memory Ideas?

7

Extensible array

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy
For example: new ArrayList(2)

…

8

9/24/24

3

Extensible array

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy
For example: new ArrayList(2)

…

Running time: Θ(n)

9

Extensible array

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy
For example: new ArrayList(2)

…

How much extra memory
should we allocate?

10

Extensible array
…

Challenge: most of the calls to add will be O(1)

How else might we talk about runtime?

What is the average worst-case running time of a
sequence of adds?

l Note this is different than the average-case running
time

11

Amortized analysis
What does “amortize” mean?

12

9/24/24

4

Amortized analysis
There are many situations where the worst case running
time is bad

However, if we average the operations over n operations,
the average time is more reasonable

This is called amortized analysis
l This is different than average-case running time, which requires

probabilistic reasoning about input
l The worse case running time doesn’t change

13

What are the costs?

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost:

Assume we start with an array of size 1 and double each time

Count: 1) inserting element and 2) copying elements

17

What are the costs?

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

Assume we start with an array of size 1 and double each time

Count: 1) inserting element and 2) copying elements

18

What are the costs?

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

basic cost: 1 1 1 1 1 1 1 1 1 1

double cost: 0 1 2 0 4 0 0 0 8 0

Count: 1) inserting element and 2) copying elements

19

9/24/24

5

What are the costs?

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

basic cost: 1 1 1 1 1 1 1 1 1 1

What is the sum of basic cost for n operations?

What is the sum of the copy cost for n operations?

double cost: 0 1 2 0 4 0 0 0 8 0

20

Amortized analysis
More generally:

total_cost(n) = basic_cost(n) + double_cost(n)

over n operations:
amortized O(1)

double_cost(n) = 1 + 2 + 4 + … + n/2 + n = basic_cost(n) = n 2n

total_cost(n) = 3n

21

Amortized analysis vs.
worse case
What is the worst case of add?

l Still θ(n)
l If you have an application that needs it to be O(1), this

implementation will not work!

amortized analysis give you the cost of n
operations (i.e., average cost) not the cost of any
individual operation

22

Extensible arrays
What if instead of doubling the array, we increase
the array by a fixed amount (call it k) each time

Is the amortized run-time still O(1)?
l No!
l Why?

23

9/24/24

6

Amortized analysis
Consider the cost of n insertions for some constant k

double_cost(n) =k+2k+3k+4k+5k+...+n

total_cost(n) = basic_cost(n) + double_cost(n)

 = ki
i=1

n/k

∑

 =k i
i=1

n/k

∑

= 𝑘
𝑛
𝑘
𝑛
𝑘 + 1
2

= Ω(n2)

basic_cost(n) = n

24

Amortized analysis
Consider the cost of n insertions for some constant k

amortized Ω(n)!

𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡 𝑛 = n + Ω(n2)
= Ω(n2)

25

Accounting method

Each operation has an
amount we charge

(this will become the
amortized run-time)

if the actual cost of the operation
is less than the charge, put the
excess in the bank

if the actual cost of the operation
is more than the charge, get the
extra needed from the bank

can never have
< 0 in the bank

Key idea: charge more for low-cost operations and save
that up to offset the cost of expensive operations

26

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank:

How much should we pay for each insert?

28

9/24/24

7

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank:

Try insert: 2

29

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank:

Try insert: 2

How much is left?

30

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 1

Try insert: 2

31

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 1

Try insert: 2

How much is left?

32

9/24/24

8

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 1 1

Try insert: 2

33

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 1 1 0

Try insert: 2

34

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 1 1 0 1

Try insert: 2

35

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 1 1 0 1

Try insert: 2

How much is left?

36

9/24/24

9

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 1 1 0 1

Try insert: 2

-2!!

37

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank:

Try insert: ??

38

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank:

Try insert: 3

How much is left?

39

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 2

Try insert: 3

40

9/24/24

10

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 2 3

Try insert: 3

41

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 2 3 3

Try insert: 3

42

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 2 3 3

Try insert: 3

43

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 2 3 3 5

Try insert: 3

44

9/24/24

11

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 2 3 3 5 3 5 7 9

Try insert: 3

45

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 2 3 3 5 3 5 7 9 3

Try insert: 3

46

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 2 3 3 5 3 5 7 9 3

Try insert: 3

Will this work??

47

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 2 3 3 5 3 5 7 9

Try insert: 3 1: pay for our operation
Getting ready for the copy:
1: pay for our copy
1: pay to copy from an item
 first half

last copy
happened here

48

9/24/24

12

Accounting method
Insert pay 3 = O(1)!

Particularly useful when there are multiple
operations

49

Another set data structure
We want to support fast lookup and insertion (i.e. faster
than linear)

Arrays can easily be made to be fast for one or the other
l fast search: keep list sorted

l O(n) insert
l O(log n) search

l fast insert: extensible array
l O(1) insert (amortized)
l O(n) search

50

Another set data structure
Idea: store data in a collection of arrays

l array i has size 2i

l an array is either full or empty (never partially full)
l each array is stored in sorted order
l no relationship between arrays

51

Another set data structure
Which arrays are full and empty are based on the number of elements

l specifically, binary representation of the number of elements

l 4 items = 100 = A2-full, A1-empty, A0-empty
l 11 items = 1011 = A3-full, A2-empty, A1-full, A0-full

Lookup: binary search through each array
l Worst case runtime?

A0: [5]
A1: [4, 8]
A2: empty
A3: [2, 6, 9, 12, 13, 16, 20, 25]

52

9/24/24

13

Another set data structure

Lookup: binary search through each array

Worst case: all arrays are full
l number of arrays = number of digits = log n
l binary search cost for each array = O(log n)

l O(log n log n)

A0: [5]
A1: [4, 8]
A2: empty
A3: [2, 6, 9, 12, 13, 16, 20, 25]

53

Another set data structure
Insert(A, item)

l starting at i = 0
l current = [item]
l as long as the level i is full

l merge current with A i using merge procedure

l store to current
l A i = empty

l i++

l Ai = current

54

Insert 5
A0: empty Insert

l starting at i = 0

l current = [item]
l as long as the level i is full

l merge current with Ai using merge
procedure

l store to current
l Ai = empty
l i++

l A i = current

55

Insert 5
A0: [5] Insert

l starting at i = 0

l current = [item]
l as long as the level i is full

l merge current with Ai using merge
procedure

l store to current
l Ai = empty
l i++

l A i = current

56

9/24/24

14

Insert 6
A0: [5] Insert

l starting at i = 0

l current = [item]
l as long as the level i is full

l merge current with Ai using merge
procedure

l store to current
l Ai = empty
l i++

l A i = current

57

Insert 6
A0: empty
A1: [5, 6] Insert

l starting at i = 0

l current = [item]
l as long as the level i is full

l merge current with Ai using merge
procedure

l store to current
l Ai = empty
l i++

l A i = current

58

Insert 12
A0: empty
A1: [5, 6] Insert

l starting at i = 0

l current = [item]
l as long as the level i is full

l merge current with Ai using merge
procedure

l store to current
l Ai = empty
l i++

l A i = current

59

Insert 12
A0: [12]
A1: [5, 6] Insert

l starting at i = 0

l current = [item]
l as long as the level i is full

l merge current with Ai using merge
procedure

l store to current
l Ai = empty
l i++

l A i = current

60

9/24/24

15

Insert 4
A0: [12]
A1: [5, 6] Insert

l starting at i = 0

l current = [item]
l as long as the level i is full

l merge current with Ai using merge
procedure

l store to current
l Ai = empty
l i++

l A i = current

61

Insert 4
A0: empty
A1: empty
A2: [4, 5, 6, 12]

Insert
l starting at i = 0

l current = [item]
l as long as the level i is full

l merge current with Ai using merge
procedure

l store to current
l Ai = empty
l i++

l A i = current

62

Insert 23
A0: empty
A1: empty
A2: [4, 5, 6, 12]

Insert
l starting at i = 0

l current = [item]
l as long as the level i is full

l merge current with Ai using merge
procedure

l store to current
l Ai = empty
l i++

l A i = current

63

Insert 23
A0: [23]
A1: empty
A2: [4, 5, 6, 12]

Insert
l starting at i = 0

l current = [item]
l as long as the level i is full

l merge current with Ai using merge
procedure

l store to current
l Ai = empty
l i++

l A i = current

64

9/24/24

16

Another set data structure
Insert

l starting at i = 0
l current = [item]
l as long as the level i is full

l merge current with A i using merge procedure

l store to current
l A i = empty

l i++

l Ai = current

running time?

65

Insert running time
Worst case

l merge at each level
l 2 + 4 + 8 + … + n/2 + n = O(n)

There are many insertions that won’t fall into this
worse case

What is the amortized worse case for insertion?

66

insert: amortized analysis

Consider inserting n numbers
l how many times will A0 be empty?
l how many times will we need to merge with A0?
l how many times will we need to merge with A1?
l how many times will we need to merge with A2?
l …
l how many times will we need to merge with Alog n?

67

insert: amortized analysis

Consider inserting n numbers
l how many times will A0 be empty? n/2
l how many times will we need to merge with A0? n/2
l how many times will we need to merge with A1? n/4
l how many times will we need to merge with A2? n/8
l …
l how many times will we need to merge with Alog n? 1

cost of each of these steps?

times

68

9/24/24

17

insert: amortized analysis

l Consider inserting n numbers
l how many times will A0 be empty? n/2 O(1)
l how many times will we need to merge with A0? n/2 2
l how many times will we need to merge with A1? n/4 4
l how many times will we need to merge with A2? n/8 8
l …
l how many times will we need to merge with Alog n? 1 n

total cost:

times cost

69

insert: amortized analysis

l Consider inserting n numbers
l how many times will A0 be empty? n/2 O(1)
l how many times will we need to merge with A0? n/2 2
l how many times will we need to merge with A1? n/4 4
l how many times will we need to merge with A2? n/8 8
l …
l how many times will we need to merge with Alog n? 1 n

total cost: log n levels * O(n) each level
 O(n log n) cost for n inserts
 O(log n) amortized cost!

times cost

70

