BINARY SEARCH TREES

9/17/24

Admin

| el
Assignment 3 out
[Partner assignment
1 Can work with anyone
1 Coding + paper (two separate submissions)
1 Follow naming conventions
a

command-line arguments

Group/mentor schedule
o —

Group sessions optional this week
O Mentors will be available to answer questions

Group sessions this week:
o Thu 6-7pm (Sae)
o Fri 9:30-10:30am (Taylor)
o Fri 5-6pm (Stanley)
1 No group session for Catherine or Elshiekh

Mentor hours changes this week:
o No mentor hours on Friday for Catherine
o Extra hours: Sunday, 9-11am (Catherine)

Midterm 1

|l Aif
Available on Thursday morning

Must take by end of day Friday
Download from Gradescope
01 hour and 15 minutes for exam

130 additional minutes to scan and upload

Sample midterm (and solutions) available

9/17/24

Stock market problem Binary Search Trees
e e
5 6

Binary Search Trees Example
[[

BST — A binary tree where a parent’s value is greater than all
values in the left subtree and less than or equal to all the values in
the right subtree

leftTree(i) <i < rightTree(i)
and the left and right children are also binary search trees

Why not?

leftTree(i) <i <rightTree(i)

Ambiguous about where elements that are equal would reside

Can be implemented with references or
an array

9/17/24

2
What else can we conclude? Another example: the solo tree
|) |)
leftTree(i) <i <rightTree(i) @
The smallest element is the left-
most element
The largest element is the right-
most element
9 10
Another example: the twig Operations
| |
e Search(Tk) — Does value k exist in tree T
Insert(Tk) — Insert value k into tree T
Delete(T,x) — Delete node x from tree T
° Minimum(T) — What is the smallest value in the tree?
Maximum(T) — What is the largest value in the tree?
Successor(T,x) = What is the next element in sorted order after x
Predecessor(T,x) — What is the previous element in sorted order of x
Median(T) — return the median of the values in tree T
11 12

9/17/24

Search
=

How do we find an element?

BSTSEARCH(z, k)

1 ifze=nullork=x

2 return x

3 elseif k <z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSEARCH(RIGHT(x), k)

Finding an element

=]
Search(T, 9)

BSTSEARCH(z, k)
ifz=nullork=zx

1
2 return x

3 olseif k<z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSzarcH(RIGHT(x), k)

13

14

Finding an element

|
Search(T, 9)

STSEARCH(z. k)

fr=nullork=z
return x

elseif k<
return BSTSEARCH(LEFT(x), k)
else

EE ey

return BSTSEARCH(RIGHT(x), k)

Finding an element

|
Search(T, 9)

9>127?

BSTSEARCH(z, k)
fo=nulork=z
return x

elseif k <«

return BSTSEARCH(LEFT(x), k)
else

EX RS

return BSTSEARCH(RIGHT(x), k)

15

16

9/17/24

Finding an element

=]
Search(T, 9)

BSTSEARCH(z, k)
ifz=nullork=zx

1
2 return x

3 elseif k<z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSearcH(RIGHT(x), k)

Finding an element

=]
Search(T, 9)

BSTSEARCH(z, k)

1 ifo=nulork=z

2 return x

3 olseif k<z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSzarcH(RIGHT(x), k)

17

18

Finding an element

|
Search(T, 9)

BSTSEARCH(z, k)

1
2
3
1
5
6

fr=nullork=z
return x
elseif k <z

return BSTSEARCH(LEFT(x), k)
else
return BSTSEARCH(RIGHT(x), k)

Finding an element

|
Search(T, 13)

BSTSEARCH(z, k)
fo=nulork=z

return BSTSEARCH(LEFT(x), k)

EX s

return BSTSEARCH(RIGHT(x), k)

19

20

9/17/24

Finding an element

=]
Search(T, 13)

BSTSEARCH(z, k)

1 fz=mllork=z

2 return x

3 elseif k<z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSearcH(RIGHT(x), k)

Finding an element

=]
Search(T, 13)

BSTSEARCH(z, k)
ifz=nullork=zx

1
2 return x

3 olseif k<z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSzarcH(RIGHT(x), k)

21 22
lterative search Running time of BSTSearch

| |

ITERATIVEBSTSEARCH(z, k)

2

1 while z # null and k # 2 Worst case?

2 ifk<z B(height of the tree)

3 z «— LEFT(z)

4 else

5 = « RIGHT(z) Average case?

6 returnz

O(height of the tree)

BSTSEARCH(z, k)

1 ifz=nullork=z Best case?

2 return x

3 elseif k<a oM

4 return BSTSEARCH(LEFT(x), k)

5 else

6 return BSTSEARCH(RIGHT(x), k)
23 25

9/17/24

Height of the tree Insertion

|) |)
Worst case height?
9 Search and then insert when you find a “null” spot in the tree

n-1

“the twig”
Best case height?

llog2n]

complete (or near complete) binary tree
Average case height?

Depends on two things:

= the data

= how we build the tree!

26 27
Insertion Insertion
| |
BSTINSERT(T, z) BSTINSERT(T, z)
1 if RooT(T) = null 1 if RooT(T) = null
2 RoOT(T) «— z 2 Roo1(T) «—z
3 else 3 else ,
4 y — Roo1(T) 4 y — Roo1(T) Similar to search
5 while y # null 5 while y # null TTERATIVEBS TSEARGH(z, k)
6 prev —y 6 prev —y 1 while z # null and k # &
7 ifz<y 7 ifz<y 2 ith<s
8 y — LEFT(y) 8 y — LEFT(y) 2 e Lert(z)
9 else 9 else 5 2 Rici(z)
10 y — RIGHT(y) 10 y — RIGHT(y) 6 returnz
11 PARENT(z) « prev 11 PARENT(z) « prev
12 if < prev 12 if © < prev
13 LerT(prev) «— z 13 LEFT(prev) < =
14 else 14 else
15 RIGHT(prev) «— z 15 RIGHT(prev) «— z

28

29

9/17/24

Inserting duplicates

|
Insert(T, 14)

leftTree(i) <i < rightTree(i)

Inserting duplicates

|
Insert(T, 14)

leftTree(i) < i <rightTree(i)

35

36

Running time
[

O(height of the tree)

Search and then insert when you find a “null” spot in the tree

Running time
[

O(height of the tree)

Search and then insert when you find a “null” spot in the tree

Why not ©(height of the tree)?

37

38

Running time

Insert(T, 15) 0

Height of the tree
=

Worst case: “the twig” — When will this happen?

Search and then insert when you find a “null” spot in the tree

39

40

Height of the tree
[

Best case: “complete” — When will this happen?

Search and then insert when you find a “null” spot in the tree

Height of the tree
[

Average case for random data?
Search and then insert when you find a “null” spot in the tree
Randomly inserting data into

a BST generates a tree on
average that is O(log n)

41

42

9/17/24

Min/Max

|)
BSTMin(z) ITERATIVEBSTMIN(z)
1 if Lerr(z) = null 1 while LEFT(x) # null
2 return 2 — Lert(z)
3 else 3 return z
4 return BSTMiN(LEFT(x))

Running time of min/max?

|)
BSTMin(z) TTERATIVEBSTMIN(2)
1 if LeFr(z) = null i while LEFT(z) {r?ulg
2 return 2 x — LEFT(2)
3 else 3 return z
4 return BSTMN(LEFT(x))

O(height of the tree)

59 60
Successor and predecessor Successor and predecessor
|] |]

Predecessor(12)? 9 Predecessor in general? largest node of all those
smaller than this node
rightmost element of

e e the left subtree
61 62

10

Successor Successor
| |
Successor(12)? 13 Successor in general? smallest node of all those
larger than this node
leftmost element of the
° right subtree
63 64
Successor Successor
| |
What if the node smallest node of all those What if the node
doesn't have a right larger than this node doesn’t have a right node is the largest
subtree? subtree?
leftmost element of the the successor is the node
right subtree that has x as a
predecessor
65 66

9/17/24

11

9/17/24

Successor Successor
|) |)
successor is the node successor is the node
that has x as a that has x as a
predecessor predecessor
67 68
Successor Successor
| |
ke i til
successor is the node We;rpegﬂtz)m‘g”ugpetjgl successor is the node
that has x as a right child that has x as a
predecessor predecessor
69 70

12

9/17/24

Successor Successor
= |
SUCCESSOR(z) SUCCESSOR(z) if we have a right
1 if RIGHT(z) # null 1 if RicuT(z) # null subtree, return the
return BSTMIN(RIGHT(z)) 2 return BSTMIN(RIGHT(z)) smallest of the right
3 else 3 else subtree
4 y < PARENT(z) 4 y < PARENT(z)
5 while y # null and z = RIGHT(y) 5 while y # null and z = RIGHT(y)
6 Ty 6 Ty
7 y < PARENT(y) 7 y « PARENT(y)
8 returny 8 returny
71 72
Successor Successor running time
| |
O(height of the tree)
SUCCESSOR(z) find the node that x is
1 if RicHT(z) # null the predecessor of
2 return BSTMIN(RIGHT(z))
3 else SUCCESSOR(z)
4 y < PARENT(z) keep going up until 1 if RIGHT(z) # null
5 while y # null and z = RIGHT(y) we’re no longer a 2 return BSTMIN(RIGHT(z))
6 Ty right child 3 else
7 y « PARENT(y) 4 y < PARENT(z)
8 returny 5 while y # null and z = RIGHT(y)
6 Ty
7 y « PARENT(y)
8 returny
73 74

13

9/17/24

Deletion

Three cases!

Deletion: case 1

No children

Just delete the node

75 76
Deletion: case 1 Deletion: case 2
|
One child
No children
Splice out the node
Just delete the node
77 78

14

9/17/24

Deletion: case 2
One child

Splice out the node

Deletion: case 3
Two children

Replace x with it's successor

79

80

Deletion: case 3

Two children

Replace x with it's successor

Deletion: case 3
Two children
Will we always have a successor?

Why successor?
Larger than the left subtree

Less than or equal to right subtree

81

82

15

9/17/24

Height of the tree

Most of the operations take time
O(height of the tree)

We said trees built from random data have height
O(log n), which is asymptotically tight

Two problems:
We can't always ensure random data
What happens when we delete nodes and insert others
after building a tree?

Balanced trees

Make sure that the trees remain balanced!
Red-black trees
AVL trees
2-3-4 trees

B-trees

83 84
Red-black trees: BST (plus some) Red-black trees: BST (plus some)
| |
every node is either red or black every node is either red or black
root is black root is black
leaves (NIL) are black leaves (NIL) are black
if a node is red, both children are black if a node is red, both children are black
for every node, all paths from the node to descendant leaves for every node, all paths from the node to descendant leaves
contain the same number of black nodes. contain the same number of black nodes.
h(x): height of node x: number of edges in longest path
from x to a leaf
ipss/ /en wikipedia.org /wiki/Red-black_tree
85 86

16

9/17/24

Red-black trees: BST (plus some)
e

h(x): height of node x: number of edges in longest path
from x to a leaf

What is the height of the root node?

Red-black trees: BST (plus some)
e

D

h(x): height of node x: number of edges in longest path
from x to a leaf

87 88
Red-black trees: BST (plus some) Red-black trees: BST (plus some)
| |
every node is either red or black every node is either red or black
root is black root is black
leaves (NIL) are black leaves (NIL) are black
if a node is red, both children are black if a node is red, both children are black
for every node, all paths from the node to descendant leaves for every node, all paths from the node to descendant leaves
contain the same number of black nodes. contain the same number of black nodes.
bh(x): black height of node x: number of black nodes on a bh(x): black height of node x: number of black nodes on a
path from x to leaf (not including x) path from x to leaf (not including x)
Why don't we say "path with the most..."”2 Why don’t we say "path with the most...”?
89 90

17

9/17/24

Red-black trees: BST (plus some)

bh(x): black height of node x: number of black nodes on a
path from x to leaf (not including x)

What is the black height of the root node?

Red-black trees: BST (plus some)

D

bh(x): black height of node x: number of black nodes on a
path from x to leaf (not including x)

Bounding the height Bounding the height
| |
every node is either red or black h(x): height of node x: number of edges in every node is either red or black h(x): height of node x: number of edges in
root s black longest path from X o a leaf root is black longest path from x fo a leaf
leaves (NIL) are black leaves (NIL) are black
if a node is red, both children are black bh(x): black height of node x: number of if a node is red, both children are black bh(x): black height of node x: number of
P black nodes on a path from x to leaf (not black nodes on a path from X to leaf (not
or every node, all paths from the node fo black o7 every node, all paths From The no: black
descendant leaves contain the same number of including x) descendant leaves contain the same number of including x)
black nodes. black nodes.
Claim 1: For every node x, bh(x) = h(x)/2 Claim 1: For every node x, bh(x) = h(x)/2
Worst case: nodes alternate red/black
2 - root is black
Proof? - leaf is black
In terms of h(x): How many black nodes are
there on this path?

18

Bounding the height
=

every node is either red or black h(x): height of node x: number of edges in

longest path from x fo leaf

root is black

leaves (NIL) are black
bh(x): black height of node x: number of

if @ node is red, both children are black
black nodes on a path from X fo leaf (not

or every node, all paths o plack
descendant leaves contain the same number of including x)
black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

Worst case: nodes alternate red/black L
- root is black °
- leaf is black [)

Bounding the height
=

every node is either red or black h(x): height of node x: number of edges in

longest path from X o a leaf

root is black

leaves (NIL) are black
bh(x): black height of node x: number of

black nodes on @ path from x fo leaf (not
including x)

if a node is red, both children are black
or every node, all paths from the node fo
descendant leaves contain the same number of

black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

Worst case: nodes alternate red/black L
- root is black L[]
- leaf is black [)

bh(x) = h(x)/2

(Note that bh does not include the roof)

95

96

Bounding the height
[

every node is either red or black h(x): height of node x: number of edges in

longest path from x to leaf

root is black

leaves (NIL) are black
bh(x): black height of node x: number of

black nodes on a path from x to leaf (not
including x)

if a node is red, both children are black

ode, all paths o
descendant leaves contain the same number of
black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

Worst case: nodes alternate red/black L]
- root is black [)
- leaf is black [)

bh(x) = h(x)/2
We can remove red nodes, but

that would decrease h(x) u

Bounding the height
[

Claim 2: The subtree rooted at any node x contains at
least 207 — 1 internal (non-leaf) nodes

Proof?

97

98

9/17/24

19

9/17/24

Structural induction Structural induction
|) |)
X
Want to prove something about a Proof by induction:
recursive structure (e.g., a tree) IH: Assume the property holds for
sub-structures (i.e., subtrees)
Show that it holds for the entire tree
99 100
Structural induction Bounding the height
| |
x Claim 2: The subtree rooted at any node x contains at
bh(x) _ 1 j -
Base case is often the smallest least 2 1 internal (non-leaf) nodes
structure possible (e.g., a leaf)
it it Base case:
101 102

20

Bounding the height
=

Claim 2: The subtree rooted at any node x contains at
least 22"(¥) — 1 internal (non-leaf) nodes

Base case: leaf (h(x) = 0)

bh(x) = 0 bh(x): black height of node x:
number of black nodes on a path
20-1= from x to leaf (not including x)

Bounding the height
=

Claim 2: The subtree rooted at any node x contains at
least 267(¥) — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0

IH: Assume 2P0 — 1 for all y that are subfrees of x

What is bh(child(x)) wrt bh(x)?

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

103

104

Bounding the height
[

x is red: bh(L‘hild(x)) =7

bh(child(x)) bh(child(x))

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

Bounding the height
[

x is red: bh(child(x)) =bh(x)—1

bh(child(x)) @ @ bh(child(x))

bh(x): black height of node X: number of black nodes on
a path from x to leaf (not including x)

106

107

9/17/24

21

9/17/24

Bounding the height
=

x is black: bh(child(x)) =7

bh(child(x)) bh(child(x))

bh(x): black height of node x: number of blcack nodes on
a path from x to leaf (not including x)

Bounding the height
=

x is black: bh(child(x)) = bh(x) or bh(x) — 1

bh(child(x)) @ @ n(hidx) @ @ Dh(child(x))

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

108

109

Bounding the height
[

Claim 2: The subtree rooted at any node x contains at
least 222(¥) — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0

IH: Assume 22" — 1 for all y that are subtrees of x

x is red: bh(child(x)) = bh(x) — 1
x is black: bh(child(x)) = bh(x) or bh(x) — 1

bh(child(x)) = bh(x) — 1

Bounding the height
|
Claim 2: The subtree rooted at any node x contains at
least 207 — 1 internal (non-leaf) nodes
Inductive case: h(x) > 0
IH: Assume 22" — 1 for all y that are subtrees of x
bh(child(x)) = bh(x) — 1
X

How many (internal
nodes are in this
tree (at least)?

110

22

9/17/24

Bounding the height
=

Claim 2: The subtree rooted at any node x contains at
least 22"(¥) — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0

IH: Assume 2P0 — 1 for all y that are subtrees of x

bh(child(x)) = bh(x) — 1

x)1

2bh()-1 _ 1 2bh()-1 _ 1

Bounding the height
=

Claim 2: The subtree rooted at any node x contains at
least 267(¥) — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0
IH: Assume 2P0 — 1 for all y that are subfrees of x

bh(child(x)) = bh(x) —1

(zbn(x)—171) + (th(x)—l —D+1= 2bh(x) _ 1

112

113

Bounding the height (almost there!)

Bounding the height

|] |]
. h(x) . h(x)
Claim 1: For every node x, bh(x) < - Claim 1: For every node x, bh(x) > -
Claim 2: The subtree rooted at any node x contains at Claim 2: The subtree rooted at any node x contains at
least 2°7() — 1 internal (non-leaf) nodes least 2P%(¥) — 1 internal (non-leaf) nodes
n >20h0) —1 Claim 2
n >20®/2 _q Claim 1
How does this help us2 "
n+1 > 20/ mat
h(x) < 2log(n+1) math
What does this mean?
114 115

23

9/17/24

Bounding the height Can it be done?
|) |)
every node is either red or black
root is black Can we maintain the red-black tree properties without
leaves (NIL) are black If we can maintain these making insertion and deletion more expensive?
if @ node is red, both children are black ies: height O(1
for every node, all paths from the node o properties: height O (logn)
descendant leaves contain the same number of
black nodes. e
Search ° e
| Right Rotation o 0
nsert
Del These all become 0(logn)
elete D Srves—
Left Rotation
Maximum ° e e o
hips;//envikipedia.org /wiki/ Tree_rotation# /mediaFilesTree_rotation.png
116 117
A quick example Number guessing game
| |
I'm thinking of a number between 1 and n
You are trying to guess the answer
For each guess, I'll tell you “correct”, “higher” or “lower”
Describe an algorithm that minimizes the number of guesses
118 119

24

https://www.youtube.com/watch?v=vDHFF4wjWYU

