

Assignment 3 out

Partner assignment

Can work with anyone

Coding + paper (two separate submissions)

Follow naming conventions

command-line arguments

2

Group / mentor schedule

Group sessions optional this week

Mentors will be available to answer questions

Group sessions this week:

Thu 6-7pm (Sae)

Fri 9-30-10-30am (Taylor)

Fri 5-6pm (Stanley)

No group session for Catherine or Elshiekh

Mentor hours changes this week:

No mentor hours on Friday for Catherine

Extra hours: Sunday, 9-11am (Catherine)

Available on Thursday morning

Must take by end of day Friday

Download from Gradescope

1 hour and 15 minutes for exam
30 additional minutes to scan and upload

Sample midterm (and solutions) available

Stock market problem

Binary Search Trees

6

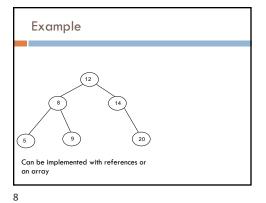
5

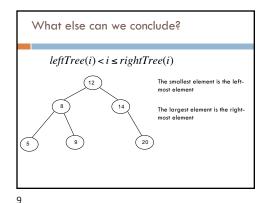
7

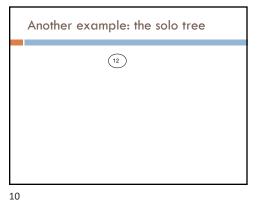
Binary Search Trees

BST – A binary tree where a parent's value is greater than all values in the left subtree and less than or equal to all the values in the right subtree $leftTree(i) < i \leq rightTree(i)$ and the left and right children are also binary search trees

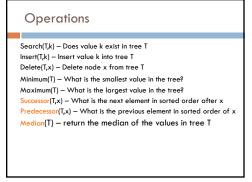
Why not? $leftTree(i) \leq i \leq rightTree(i)$ Ambiguous about where elements that are equal would reside

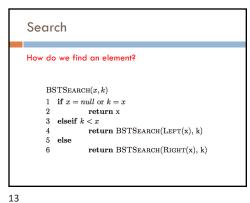


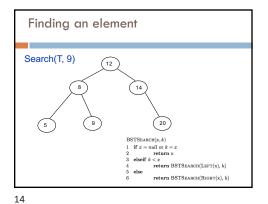


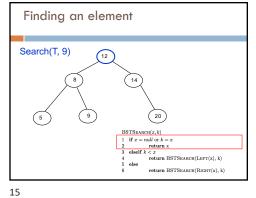


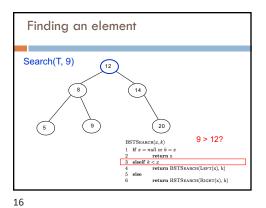
Another example: the twig

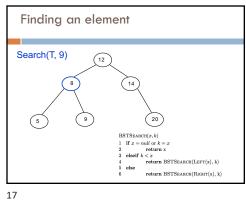


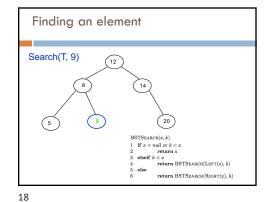


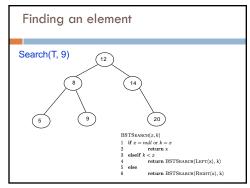


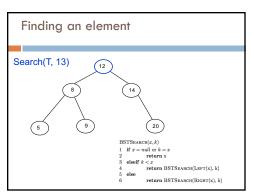


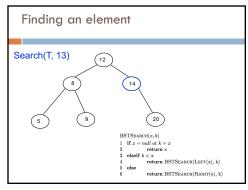


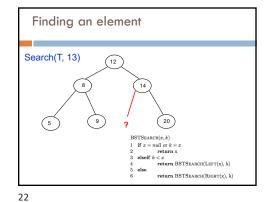












23

ITERATIVEBSTSEARCH(x,k)1 while $x \neq null$ and $k \neq x$ 2 if k < x3 $x \leftarrow \text{Left}(x)$ 4 else

5 $x \leftarrow \text{Right}(x)$ 6 return xBSTSEARCH(x,k)1 if x = null or k = x2 return x3 elseif k < x4 return BSTSEARCH(Left(x), k)

5 else

6 return BSTSEARCH(Right(x), k)

Running time of BSTSearch

Worst case?

• 0(height of the tree)

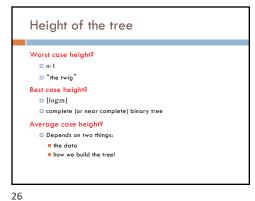
Average case?

• O(height of the tree)

Best case?

• O(1)

25



Insertion Search and then insert when you find a "null" spot in the tree

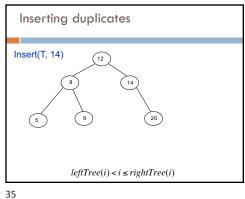
27

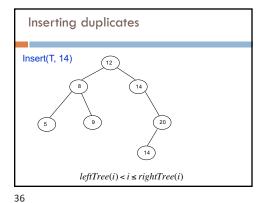
```
Insertion
BSTInsert(T, x)
1 if Root(T) = null
                  Root(T) \leftarrow x
                 y \leftarrow \text{Root}(T)
                  while y \neq null
                            prev \leftarrow y
if x < y
y \leftarrow \text{Left}(y)
else
                                       y \leftarrow \text{Right}(y)
10
11
12
13
14
15
                  PARENT(x) \leftarrow prev
                if x < prev
LEFT(prev) \leftarrow x
                             \texttt{Right}(prev) \leftarrow x
```

Insertion BSTInsert(T, x)1 if Root(T) = null $Root(T) \leftarrow x$ Similar to search $y \leftarrow \text{Root}(T)$ while $y \neq null$ ${\tt ITERATIVEBSTSearch}(x,k)$ TERATIVEIS I SEARCH(x, k)

1 while $x \neq null$ and $k \neq x$ 2 if k < x3 $x \leftarrow \text{Left}(x)$ 4 else $prev \leftarrow y$ if x < y $y \leftarrow \text{Left}(y)$ else $x \leftarrow \text{Right}(x)$ 10 11 12 $y \leftarrow \text{Right}(y)$ $PARENT(x) \leftarrow prev$ if x < prev $Left(prev) \leftarrow x$ 13 14 15 else $\texttt{Right}(prev) \leftarrow x$

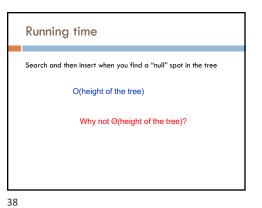
28 29

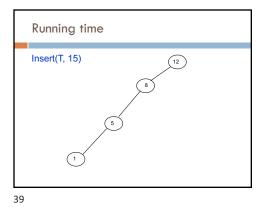




37

Running time Search and then insert when you find a "null" spot in the tree O(height of the tree)





Height of the tree

Worst case: "the twig" – When will this happen?

Search and then insert when you find a "null" spot in the tree

40

42

Height of the tree

Best case: "complete" – When will this happen?

Search and then insert when you find a "null" spot in the tree

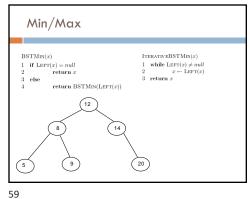
41

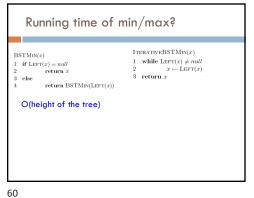
Height of the tree

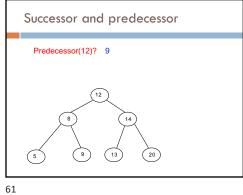
Average case for random data?

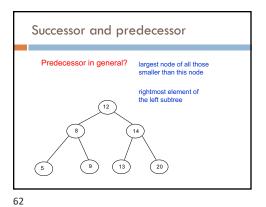
Search and then insert when you find a "null" spot in the tree

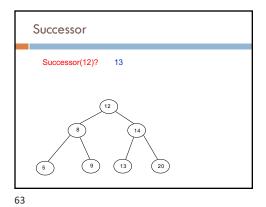
Randomly inserting data into a BST generates a tree on average that is O(log n)

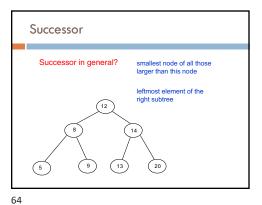








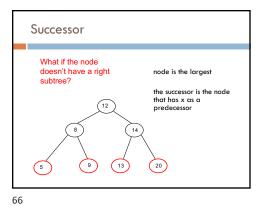


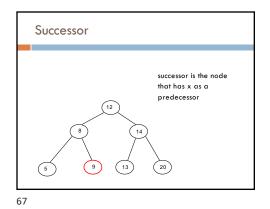


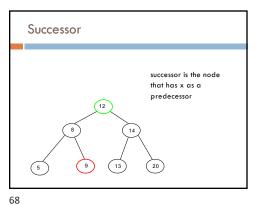
Successor

What if the node doesn't have a right subtree?

Ieftmost element of the right subtree







Successor

successor is the node that has x as a predecessor

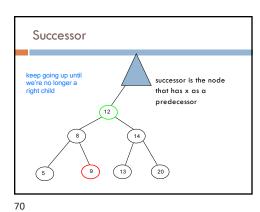
12

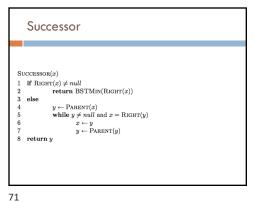
12

12

13

20





Successor if we have a right subtree, return the smallest of the right 1 if $Right(x) \neq null$ subtree $y \leftarrow \text{Parent}(x)$ while $y \neq null$ and x = Right(y) $x \leftarrow y$ $y \leftarrow PARENT(y)$ 8 return y

6 7 8 return y

73

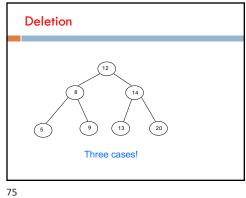
Successor find the node that x is Successor(x)the predecessor of 1 if Right(x) $\neq null$ 2 return BSTMin(Right(x)) keep going up until we're no longer a right child $y \leftarrow \text{Parent}(x)$

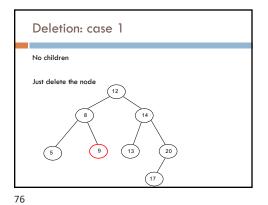
Successor running time O(height of the tree) Successor(x)1 if $Right(x) \neq null$ return BSTMIN(RIGHT(x)) $\begin{aligned} y &\leftarrow \text{Parent}(x) \\ \textbf{while} \ y &\neq null \ \text{and} \ x = \text{Right}(y) \end{aligned}$ $x \leftarrow y$ $y \leftarrow PARENT(y)$ 8 return y

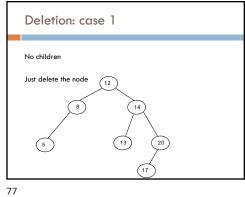
while $y \neq null$ and x = Right(y)

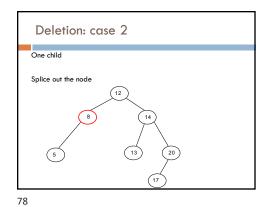
 $x \leftarrow y$ $y \leftarrow \text{Parent}(y)$

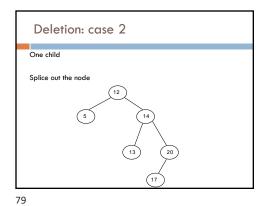
74

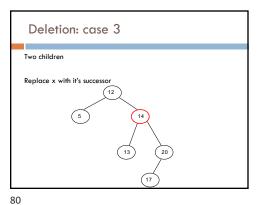










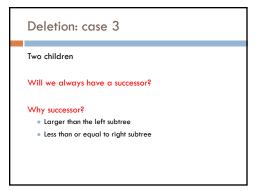


Deletion: case 3

Two children

Replace x with it's successor

81



Height of the tree

Most of the operations take time O(height of the tree)

We said trees built from random data have height $O(\log n)$, which is asymptotically tight

Two problems:

- We can't always ensure random data
- What happens when we delete nodes and insert others after building a tree?

Balanced trees

Make sure that the trees remain balanced!

- Red-black trees
- AVL trees
- □ 2-3-4 trees
- **...**

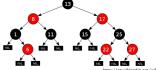
B-trees

83

84

Red-black trees: BST (plus some)

- 1. every node is either red or black
- 2. root is black
- 3. leaves (NIL) are black
- 4. If a node is red, both children are black
- for every node, all paths from the node to descendant leaves contain the same number of black nodes.



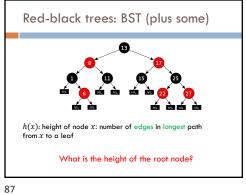
85

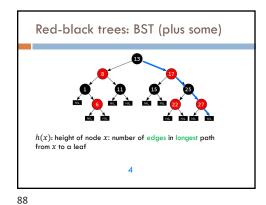
Red-black trees: BST (plus some)

- every node is either red or black
- 2. root is black
- B. leaves (NIL) are black
- 4. if a node is red, both children are black
- for every node, all paths from the node to descendant leaves contain the same number of black nodes.

h(x): height of node x: number of edges in longest path from x to a leaf

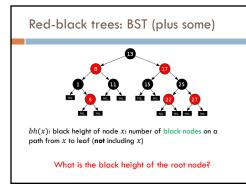
86

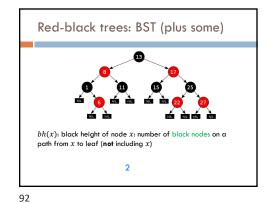




Red-black trees: BST (plus some) every node is either red or black root is black leaves (NIL) are black 4. if a node is red, both children are black for every node, all paths from the node to descendant leaves contain the same number of black nodes. bh(x): black height of node x: number of black nodes on a path from x to leaf (**not** including x) Why don't we say "path with the most..."?

Red-black trees: BST (plus some) every node is either red or black root is black leaves (NIL) are black if a node is red, both children are black for every node, all paths from the node to descendant leaves contain the same number of black nodes. bh(x): black height of node x: number of black nodes on a path from x to leaf (**not** including x) Why don't we say "path with the most..."?





93

Bounding the height

every node is either red or black
2 root is black
3 leoves (NIL) are black
4 if a node it red, both children are black
5 for every node, all paths from the node to decrease contain the tame number of black nodes on a path from x to leaf (not ladding x)

Claim 1: For every node x, bh(x) height of node x: number of black nodes on a path from x to leaf (not ladding x)

Proof?

Bounding the height

every node is either red or black

root is black

longest path from x to a leaf

longest path from x to a leaf

bh(x): black height of node x: number of edges in longest path from x to a leaf

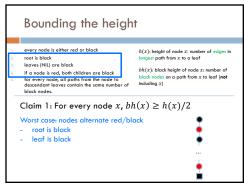
bh(x): black height of node x: number of black nodes.

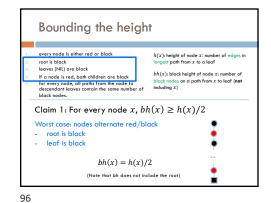
Claim 1: For every node, all paths from the node to descendant leaves contain the same number of black nodes.

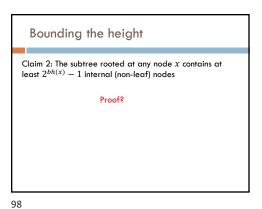
Claim 1: For every node x, $bh(x) \ge h(x)/2$ Worst case: nodes alternate red/black

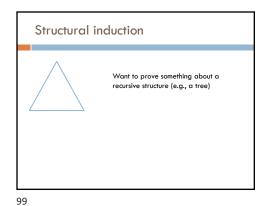
- root is black

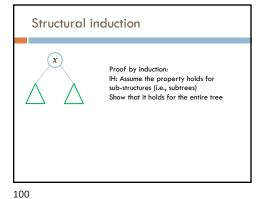
ln terms of h(x): How many black nodes are there on this path?





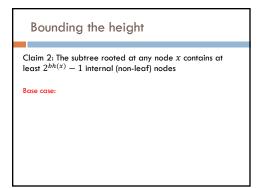


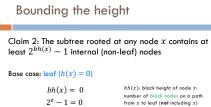


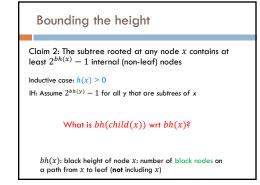


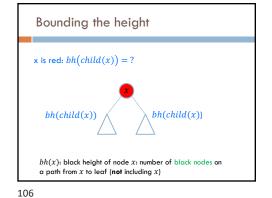
Structural induction

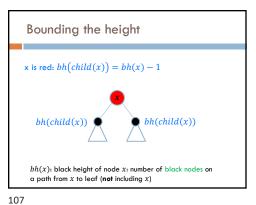
Base case is often the smallest structure possible (e.g., a leaf)

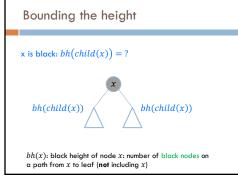


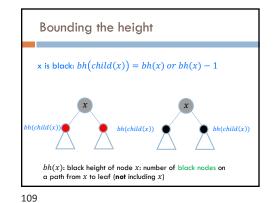


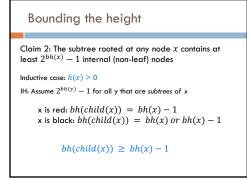


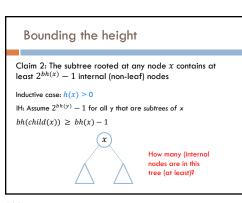


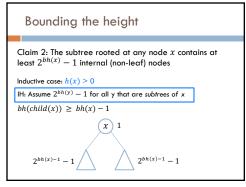


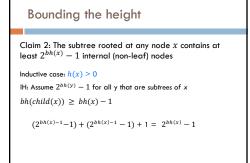












112

113

Bounding the height (almost there!)

Claim 1: For every node x, $bh(x) \le \frac{h(x)}{2}$

Claim 2: The subtree rooted at any node x contains at least $2^{bh(x)}-1$ internal (non-leaf) nodes

How does this help us?

Bounding the height

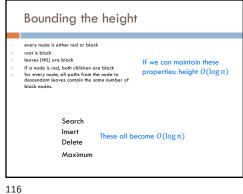
Claim 1: For every node x, $bh(x) \ge \frac{h(x)}{2}$

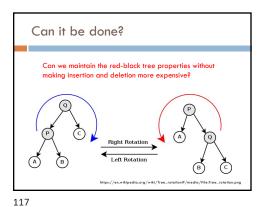
Claim 2: The subtree rooted at any node x contains at least $2^{bh(x)}-1$ internal (non-leaf) nodes

 $\begin{array}{ll} n \geq 2^{bh(x)} - 1 & \text{Claim 2} \\ \\ n \geq 2^{h(x)/2} - 1 & \text{Claim 1} \\ \\ n+1 \geq 2^{h(x)/2} & \text{math} \\ \\ h(x) \leq 2\log(n+1) & \text{math} \end{array}$

What does this mean?

114





A quick example

Number guessing game I'm thinking of a number between 1 and n You are trying to guess the answer For each guess, I'll tell you "correct", "higher" or "lower" Describe an algorithm that minimizes the number of guesses