
9/3/24

1

Recurrences
David Kauchak

cs140
Spring 2024

1

Administrative
How was assignment 0?

Mentor hours posted

Group assignment: must attend mentor hours on
Thursday or Friday and submit group assignment

Assignment 1 (due Sunday): must work with
different partner

2

Big O: Upper bound
O(g(n)) is the set of functions:

3

Omega: Lower bound
Ω(g(n)) is the set of functions:

4

9/3/24

2

Theta: Upper and lower bound
Θ(g(n)) is the set of functions:

Note: A function is θ bounded iff it is O bounded
and Ω bounded

5

Big O

n2 + n log n + 50

2n -15n2 + n3 log n

nlog n + n2 + 15n3

n5 + n! + nn

6

Big O: Upper bound
O(g(n)) is the set of functions:

7

Proving bounds: find constants that
satisfy inequalities

Show that 5n2 – 15n + 100 is Θ(n2)

Step 1: Prove O(n2) – Find constants c and n0 such that
5n2 – 15n + 100 ≤ cn2 for all n > n0

Let n0 =1 and c = 5 + 100 = 105.
100/n2 only gets smaller as n increases and we ignore -15/n since it
only varies between -15 and 0

8

9/3/24

3

Proving bounds
Step 2: Prove Ω(n2) – Find constants c and n0 such that 5n2

– 15n + 100 ≥ cn2 for all n > n0

Let n0 =4 and c = 5 – 15/4 = 1.25 (or anything less than 1.25). -15/n
is always increasing and we ignore 100/n2 since it is always between
0 and 100.

9

Bounds
No

How would we prove it?

10

Disproving bounds

Assume it’s true.

That means there exists some c and n0 such that

contradiction!

11

Divide and Conquer
Divide: Break the problem into smaller sub-problems

Conquer: Solve the sub-problems. Generally, this involves
waiting for the problem to be small enough that it is trivial to
solve (i.e. 1 or 2 items)

Combine: Given the results of the solved sub-problems,
combine them to generate a solution for the complete
problem

12

9/3/24

4

Divide and Conquer:
some thoughts
Often, the sub-problem is the same as the original problem

Dividing the problem in half frequently does the job

May have to get creative about how the data is split

Splitting tends to generate run times with log n in them

13

Divide and conquer
One approach:
- Pretend like you have a working version of your

function, but it only works on smaller sub-
problems

- If you split up the current problem in some way
(e.g. in half) and solved those sub-problems,
how could you then get the solution to the larger
problem?

14

MergeSort

16

MergeSort: Merge
Assuming L and R are sorted already, merge
the two to create a single sorted array

17

9/3/24

5

Merge
R: 2 4 6 7L: 1 3 5 8

18

Merge
R: 2 4 6 7L: 1 3 5 8

B:

19

Merge
R: 2 4 6 7L: 1 3 5 8

B:

i j

20

Merge
R: 2 4 6 7L: 1 3 5 8

B:

i j

21

9/3/24

6

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1

i j

22

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1

i j

23

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2

i j

24

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2

i j

25

9/3/24

7

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3

i j

26

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3

i j

27

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4

i j

28

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4

i j

29

9/3/24

8

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5

i j

30

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5

i j

31

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5 6

i j

32

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5 6

i j

33

9/3/24

9

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5 6 7

i j

34

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5 6 7

i j

35

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5 6 7 8

i j

36

Merge

Running time?

40

9/3/24

10

Merge

Running time? Θ(n) - linear

41

MergeSort
Running time?

42

Merge-Sort
Running time?

î
í
ì

++
=

otherwise)()()2/(2
small is if

)(
nCnDnT

nc
nT

D(n): cost of splitting (dividing) the data

C(n): cost of merging/combining the data

43

Merge-Sort
Running time?

î
í
ì

++
=

otherwise)()()2/(2
small is if

)(
nCnDnT

nc
nT

D(n): cost of splitting (dividing) the data - linear Θ(n)

C(n): cost of merging/combining the data – linear Θ(n)

44

9/3/24

11

Merge-Sort
Running time?

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

Which is?

45

Merge-Sort
cn

T(n/2)

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

T(n/2)

46

Merge-Sort
cn

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

47

Merge-Sort
cn

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)

48

9/3/24

12

Merge-Sort
cn

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8…

c c c c c … c c c c c c

49

Merge-Sort
cn

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8…

c c c c c … c c c c c c

cn

cn

cn

cn

cn

50

Merge-Sort
cn

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8…

c c c c c … c c c c c c

cn

cn

cn

cn

cn

Depth?
51

Merge-Sort
We can calculate the depth, by determining when the
recursion gets to down to a small problem size, e.g. 1

At each level, we divide by 2

1
2

=d
n

nd =2

nd log2log =

nd log2log =

nd 2log=

52

9/3/24

13

Merge-Sort
Running time?

l Each level costs cn
l log n levels

cn log n = Θ(n log n)

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

Why don’t we write it as n log2 n?

53

Log properties

loga	b	 =
log 𝑏
log 𝑎	

𝑛	log2	𝑛	 =
𝑛 log 𝑛
log 2

𝑛	log2	𝑛	 =
𝑛 log 𝑛
𝑐

= 𝜃(𝑛 log 𝑛)

54

Recurrence
A function that is defined with respect to itself on
smaller inputs

nnTnT +=)2/(2)(

nnTnT +=)4/(16)(

2)1(2)(nnTnT +-=

55

Why are we interested in
recurrences?
Computational cost of divide and conquer algorithms

l a subproblems of size n/b
l D(n) the cost of dividing the data
l C(n) the cost of recombining the subproblem solutions

In general, the runtimes of most recursive algorithms
can be expressed as recurrences

)()()/()(nCnDbnaTnT ++=

56

9/3/24

14

The challenge
Recurrences are often easy to define because
they mimic the structure of the program

But… they do not directly express the
computational cost, i.e. n, n2, …

We want to remove self-recurrence and find a
more understandable form for the function

57

Three approaches
Substitution method: when you have a good guess of the
solution, prove that it’s correct

Recursion-tree method: If you don’t have a good guess,
the recursion tree can help

l Calculate exactly (like we did with MergeSort)
l Use it to get a good quest, then prove with substitution method.

Master method: Provides solutions for recurrences of the
form:

)()/()(nfbnaTnT +=

58

Substitution method
Guess the form of the solution
Then prove it’s correct by induction

Halves the input then a constant amount of work

dnTnT +=)2/()(

Guesses?

59

Substitution method
Guess the form of the solution
Then prove it’s correct by induction

Halves the input then a constant amount of work
Similar to binary search:

dnTnT +=)2/()(

Guess: O(log n)

60

9/3/24

15

Proof?

Ideas?

𝑇(𝑛) 	= 	𝑇(𝑛	/	2) 	+ 	𝑑	 = 	𝑂(log 𝑛)

61

Proof?

Proof by induction!
-Assume it’s true for smaller T(k), i.e. k < n
-prove that it’s then true for current T(n)

𝑇(𝑛) 	= 	𝑇(𝑛	/	2) 	+ 	𝑑	 = 	𝑂(log 𝑛)

62

Assume T(k) = O(log k) for all k < n
Show that T(n) = O(log n)

From our assumption, T(n/2) = O(log n/2):

From the definition of big-O: T(n/2) ≤ c log(n/2)

dnTnT +=)2/()(

þ
ý
ü

î
í
ì

³££
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

How do we now prove T(n) = O(log n)?

63

To prove that T(n) = O(log n) identify the appropriate
constants:

dnTnT +=)2/()(

þ
ý
ü

î
í
ì

³££
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c’ such that T(n) ≤ c’ log n

residual

from our inductive hypothesis

Key question: does a constant exist such that:
 𝑇 𝑛 ≤ 𝑐! log 𝑛

≤ 𝑐 log
𝑛
2
+ 𝑑

T 𝑛 = 𝑇(𝑛/2) + 𝑑

≤ 𝑐 log 𝑛 − 𝑐 log 2 + 𝑑

≤ 𝑐 log 𝑛 − 𝑐 + 𝑑

64

9/3/24

16

To prove that T(n) = O(log n) identify the appropriate
constants:

dnTnT +=)2/()(

þ
ý
ü

î
í
ì

³££
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c’ such that T(n) ≤ c’ log n

T n ≤ 𝑐 log 𝑛 − 𝑐 + 𝑑

Key question: does a constant exist such that:
 𝑇 𝑛 ≤ 𝑐! log 𝑛

if 𝑐 ≥ 𝑑, then, just let c’ = c

T n ≤ 𝑐 log 𝑛 − 𝑐 + 𝑑 ≤ 𝑐 log 𝑛

65

To prove that T(n) = O(log n) identify the appropriate
constants:

dnTnT +=)2/()(

þ
ý
ü

î
í
ì

³££
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c’ such that T(n) ≤ c’ log n

T n ≤ 𝑐 log 𝑛 − 𝑐 + 𝑑

Key question: does a constant exist such that:
 𝑇 𝑛 ≤ 𝑐! log 𝑛

if 𝑐 < 𝑑, let c’ = d+1 and

T n ≤ 𝑐 log 𝑛 − 𝑐 + 𝑑 ≤ 𝑑 log 𝑛 + log 𝑛	

66

Base case?
For an inductive proof we need to show two things:

l Show that it holds for some base case
l Assuming it’s true for k < n show it’s true for n

What is the base case in our situation?

î
í
ì

+
(1)Q

=
otherwise)2/(

small is if
)(

dnT
n

nT

67

Guess the solution?
At each iteration, does a linear amount of work (i.e.
iterate over the data) and reduces the size by one at
each step
O(n2)

Assume T(k) = O(k2) for all k < n
l again, this implies that T(n-1) ≤ c(n-1)2

Show that T(n) = O(n2), i.e. T(n) ≤ c’n2

nnTnT +-=)1()(

68

9/3/24

17

nnTnT +-=)1()(
nnc +-£ 2)1(

nnnc ++-=)12(2

nccncn ++-= 22

if

residual

02 £++- nccn

from our inductive hypothesis

then let c’ = c and there exists a constant
such that 𝑇 𝑛 ≤ 𝑐*𝑛2

69

nnTnT +-=)1()(
nnc +-£ 2)1(

nnnc ++-=)12(2

nccncn ++-= 22 residual

02 £++- nccn
nccn -£+- 2
nnc -£+-)12(

12 -
³
n
nc

n
c

/12
1
-

³which holds for any
c ≥1 for n ≥1

from our inductive hypothesis

70

Guess the solution?
Recurses into 2 sub-problems that are half the size
and performs some operation on all the elements
O(n log n)

What if we guess wrong, e.g. O(n2)?

Assume T(k) = O(k2) for all k < n
l again, this implies that T(n/2) ≤ c(n/2)2

Show that T(n) = O(n2)

nnTnT +=)2/(2)(

71

nnTnT +=)2/(2)(
nnc +£ 2)2/(2
ncn += 4/2 2

ncn += 22/1
)2/1(22 ncncn --= residual

if

0)2/1(2 £-- ncn

02/1 2 £+- ncn
2³cn

overkill?

from our inductive hypothesis

72

9/3/24

18

What if we guess wrong, e.g. O(n)?

Assume T(k) = O(k) for all k < n
l again, this implies that T(n/2) ≤ c(n/2)

Show that T(n) = O(n)

nnTnT +=)2/(2)(
ncn +£ 2/2

ncn +=

nnTnT +=)2/(2)(

cn£
factor of n so we can
just roll it in?

73

What if we guess wrong, e.g. O(n)?

Assume T(k) = O(k) for all k < n
l again, this implies that T(n/2) ≤ c(n/2)

Show that T(n) = O(n)

nnTnT +=)2/(2)(
ncn +£ 2/2

ncn +=

nnTnT +=)2/(2)(

cn£
factor of n so we can
just roll it in?

Must prove the
exact form!

cn+n ≤ c’n ??

74

Prove T(n) = O(n log2 n)
Assume T(k) = O(k log2 k) for all k < n

l again, this implies that T(k) = ck log2k
Show that T(n) = O(n log2 n)

nnTnT +=)2/(2)(
nncn +£)2/log(2/2

nnTnT +=)2/(2)(

nncn +-£)2log(log 22

ncnncn +-£ 2log residual
ncn 2log£

if cn ≥ n, c > 1

75

