
8/29/24

1

Big O
David Kauchak

cs140
Fall 2024

1

Administrative
Assignment 0 out and due on Sunday

Mentor hours up soon!

No group sessions this week

2

Proofs

What is a proof?
A deductive argument showing a statement is true based
on previous knowledge (axioms)

Why are they important/useful?
Allows us to be sure that something is true
In algs: allow us to prove properties of algorithms

3

An example

Prove the sum of two odd integers is even

4

8/29/24

2

An example

Prove the sum of two odd integers is even

Odd number: n = 2k + 1 for some integer k
Even number: n = 2k for some integer k

5

An example

Prove the sum of two odd integers is even

Odd number: n = 2k + 1 for some integer k

Let 𝑎 and 𝑏 be odd numbers

By definition: 𝑎	 = 	2𝑖 + 1	and 𝑏	 = 	2𝑗 + 1 where 𝑖 and 𝑗 are integers

𝑎 + 𝑏	 = 	2𝑖 + 1 + 2𝑗 + 1
= 	2𝑖 + 2𝑗 + 2
= 	2(𝑖 + 𝑗 + 1)

Even number: n = 2k for some integer k

since 𝑖 and 𝑗 are integers then 𝑖 + 𝑗 + 1 is an
integer, so the number is even

6

Proof techniques?
example/counterexample

enumeration

by cases

by inference (aka direct proof)

trivially

contrapositive

contradiction

induction (strong and weak)

7

Proof by induction (weak)

Proving something about a sequence of events by:
1. first: proving that some starting case is true and
2. then: proving that if a given event in the

sequence were true then the next event would
be true

8

8/29/24

3

Proof by induction (weak)

1. Base case: prove some starting case is true
2. Inductive case: Assume some event is true and prove

the next event is true
a. Inductive hypothesis: Assume the event is true at

some point (usually k or k-1)
b. Inductive step to prove: What you’re trying to prove

assuming the inductive hypothesis is true (the next
step)

c. Proof of inductive step

9

Proof by induction example

Prove: ∑,-.
/ 𝑖 = /(/0.)

1

1. Base case: prove some starting case is true
2. Inductive case: Assume some event is true and prove

the next event is true
a. Inductive hypothesis: Assume the event is true at some point

(usually k or k-1)
b. Inductive step to prove: What you’re trying to prove assuming

the inductive hypothesis is true (the next step)
c. Proof of inductive step

10

Base case

Show it is true for n = 1

$
,-.

/

𝑖 = 1 =
1 ∗ 2
2

Prove: ∑,-./ 𝑖 = /(/0.)
1

11

Inductive case

Inductive hypothesis: assume n = k – 1 is true

$
,-.

23.

𝑖 =
(𝑘 − 1)𝑘

2

Prove: ∑,-./ 𝑖 = /(/0.)
1

12

8/29/24

4

Inductive case

Inductive hypothesis: assume n = k – 1 is true

$
,-.

23.

𝑖 =
(𝑘 − 1)𝑘

2

Prove:

$
,-.

2

𝑖 =
𝑘(𝑘 + 1)

2

Prove: ∑,-./ 𝑖 = /(/0.)
1

13

Inductive case: proof

Prove: ∑,-./ 𝑖 = / /0.
1

	 IH: ∑,-.
23. 𝑖 = (23.)2

1

!
!"#

$

𝑖 =

=
𝑘(𝑘 + 1)

2

14

Inductive case: proof

Prove: ∑,-./ 𝑖 = / /0.
1

	 IH: ∑,-.
23. 𝑖 = (23.)2

1

!
!"#

$

𝑖 =

=
𝑘(𝑘 + 1)

2

𝑘 +!
!"#

$,#

𝑖

= 𝑘 + ($,#)∗$
.

by IH

by definition of sum

= .$
.
+ ($,#)∗$

.

= .$/	($,#)∗$
.

= $!/$
.

Why does induction
work as a proof?

15

Layout of a proof by induction

1. State what you’re trying to prove
We show that XXX using proof by induction

2. Prove base case
3. State the inductive hypothesis
4. Inductive proof

a. State what you want to show (may include a variable change, e.g., k in
instead of n)

b. Show a step-by-step derivation from the left-hand side resulting in the
right-hand side. Give justifications for steps that are non-trivial

16

8/29/24

5

1. We	show	that∑!"#
1 𝑖 = 1(1/#)

. using proof by induction

2. !
!"#

1

𝑖 = 1 =
1 ∗ 2
2

Base case: n = 1

3. IH, Assume it holds for k-1: ∑!"#$,# 𝑖 = ($,#)$
.

4. !
!"#

$

𝑖 =
𝑘(𝑘 + 1)

2
Inductive step: want to show

!
!"#

$

𝑖 =

…

=
𝑘(𝑘 + 1)

2

17

Inductive proofs

Weak vs. strong?

18

Inductive proofs

Weak: inductive hypothesis only assumes it holds for some
step (e.g., kth step)

Strong: inductive hypothesis assumes it holds for all steps
from the base case up to k

19

Sorting

Input: An array of numbers A
Output: The number in sorted order, i.e.,

20

8/29/24

6

Sorting

What sorting algorithm?

21

Sorting

22

Does it terminate?

Is it correct?

How long does it take to run?

Memory usage?

23

Insertion-sort

Does it terminate?

24

8/29/24

7

Insertion-sort

Is it correct? Can you prove it?

25

Loop invariant

Loop invariant: A statement about a loop that is true
before the loop begins and after each iteration of the loop.

Upon termination of the loop, the invariant should help you
show something useful about the algorithm.

Loop invariant?

26

Loop invariant

Loop invariant: A statement about a loop that is true
before the loop begins and after each iteration of the loop.

At the start of each iteration of the for loop of lines 1-7 the subarray A[1..j − 1]
is the sorted version of the original elements of A[1..j − 1]

Proof?

27

Loop invariant
At the start of each iteration of the for loop of lines 1-7 the
subarray A[1..j − 1] is the sorted version of the original elements
of A[1..j − 1]

Proof by induction
- Base case: invariant is true before loop
- Inductive case: it is true after each iteration

28

8/29/24

8

Insertion-sort

How long will it take to run?

29

Asymptotic notation
How do you answer the question: “what is the running time
of algorithm x?”

We want to talk about the computational cost of an
algorithm that focuses on the essential parts and ignores
irrelevant details

You’ve seen some of this already:

30

Asymptotic notation
How do you answer the question: “what is the running time
of algorithm x?”

We want to talk about the computational cost of an
algorithm that focuses on the essential parts and ignores
irrelevant details

You’ve seen some of this already:
● linear
● n log n
● n2

31

Asymptotic notation
Precisely calculating the actual steps is tedious and not
generally useful

Different operations take different amounts of time. Even
from run to run, things such as caching, etc. cause
variations

We want to identify categories of algorithmic runtimes

32

8/29/24

9

For example…
f1(n) takes n2 steps
f2(n) takes 2n + 100 steps
f3(n) takes 3n+1 steps

Which algorithm is better (wrt run-time)?
Is the difference between f2 and f3 important/significant?

33

Runtime examples

34

Big O: Upper bound
O(g(n)) is the set of functions:

35

Big O: Upper bound
O(g(n)) is the set of functions:

We can bound the function f(n)
above by some constant factor
times g(n)

36

8/29/24

10

Big O: Upper bound
O(g(n)) is the set of functions:

We can bound the function f(n)
above by some constant times
g(n)

As n increases,
starting at some point

37

Big O: Upper bound
O(g(n)) is the set of functions:

38

Big O: Upper bound
O(g(n)) is the set of functions:

Generally, we’re most interested in
big O notation since it is an upper
bound on the running time

39

Omega: Lower bound
Ω(g(n)) is the set of functions:

40

8/29/24

11

Omega: Lower bound
Ω(g(n)) is the set of functions:

We can bound the function f(n)
below by some constant factor
times g(n)

41

Omega: Lower bound
Ω(g(n)) is the set of functions:

42

Theta: Upper and lower bound
Θ(g(n)) is the set of functions:

43

Theta: Upper and lower bound
Θ(g(n)) is the set of functions:

We can bound the function f(n)
above and below by some
constant factor of g(n) (though
different constants)

44

8/29/24

12

Theta: Upper and lower bound
Θ(g(n)) is the set of functions:

Note: A function is θ bounded iff it is O bounded
and Ω bounded

45

Theta: Upper and lower bound
Θ(𝑔(𝑛)) is the set of functions:

46

Visually

f(n)

47

Visually: upper bound

n0

f(n)

48

8/29/24

13

Visually: lower bound

n0

f(n)

49

worst-case vs. best-case vs.
overall

worst-case: what is the worst the running time of the algorithm can be?

best-case: what is the best the running time of the algorithm can be?

overall: given some data, what is the running time of the algorithm?
(Sometimes can think about this as any data or random data)

Don’t confuse this with O, Ω and Θ. The cases above are situations,
asymptotic notation is about bounding particular situations

50

Proving bounds: find constants that
satisfy inequalities

Show that 5n2 – 15n + 100 is Θ(n2)

Step 1: Prove O(n2) – Find constants c and n0 such that
5n2 – 15n + 100 ≤ cn2 for all n > n0

Let n0 =1 and c = 5 + 100 = 105.
100/n2 only gets smaller as n increases and we ignore -15/n since it
only varies between -15 and 0

51

Proving bounds
Step 2: Prove Ω(n2) – Find constants c and n0 such that 5n2

– 15n + 100 ≥ cn2 for all n > n0

Let n0 =4 and c = 5 – 15/4 = 1.25 (or anything less than 1.25). -15/n
is always increasing and we ignore 100/n2 since it is always between
0 and 100.

52

8/29/24

14

Bounds
No

How would we prove it?

53

Disproving bounds

Assume it’s true.

That means there exists some c and n0 such that

contradiction!

54

Some rules of thumb
Multiplicative constants can be omitted

● 14n2 becomes n2
● 7 log n become log n

Lower order functions can be omitted
● n + 5 becomes n
● n2 + n becomes n2

na dominates nb if a > b
● n2 dominates n, so n2+n becomes n2
● n1.5 dominates n1.4

55

Some rules of thumb
an dominates bn if a > b

● 3n dominates 2n

Any exponential dominates any polynomial
● 3n dominates n5
● 2n dominates nc

Any polynomial dominates any logorithm
● n dominates log n or log log n
● n2 dominates n log n
● n1/2 dominates log n

Do not omit lower order terms of different variables (n2 + m) does not
become n2

56

8/29/24

15

Big O

n2 + n log n + 50

2n -15n2 + n3 log n

nlog n + n2 + 15n3

n5 + n! + nn

57

Insertion-sort

How long will it take to run?

58

Insertion-sort

How long will it take to run?
Best case? Worst case? Overall?
Use theta when you can, O otherwise.

59

Insertion-sort

Best case (sorted): Θ(𝑛)

Worst case (reverse sorted): Θ(𝑛2)

Overall: O(𝑛2)

60

8/29/24

16

Some examples
● O(1) – constant. Fixed amount of work, regardless of the

input size
● add two 32 bit numbers
● determine if a number is even or odd
● sum the first 20 elements of an array
● delete an element from a doubly linked list

● O(log n) – logarithmic. At each iteration, discards some
portion of the input (i.e. half)
● binary search

61

Some examples
● O(n) – linear. Do a constant amount of work on each

element of the input
● find an item in a linked list
● determine the largest element in an array

● O(n log n) log-linear. Divide and conquer algorithms with
a linear amount of work to recombine
● Sort a list of number with MergeSort
● FFT

62

Some examples
● O(n2) – quadratic. Double nested loops that iterate over

the data
● Insertion sort

● O(2n) – exponential
● Enumerate all possible subsets
● Traveling salesman using dynamic programming

● O(n!)
● Enumerate all permutations
● determinant of a matrix with expansion by minors

63

