CS140 - Group 2

Due: Friday, 9/13 at 10pm

http://pictures.4ever.eu/fun/cartoons/friday-the-12th-160910

Please work on these questions for no more than an hour. Once you have something you're comfortable submitting (note that we are evaluating based on effort+participation, not correctness!).

One person in your group should upload the responses as a single file to gradescope, making sure to add everyone who worked together in your group

1. Runtimes

The table below contains actual run times for 6 different algorithms. The input sizes ranged from 1000 to 32000 seen at the top of the table. For each of the algorithms, give the θ complexity of the algorithms based on the running times.

Algorithm	1000	2000	4000	8000	16000	32000
A_1	50	378	3,345	26,300	215,680	1,658,002
A_2	99	110	105	976	103	100
A_3	60	130	237	501	954	1999
A_4	1005	1095	1201	1289	1420	1540
A_5	5	21	84	311	1304	5280
A_6	10	22	50	108	245	533

2. Solving recurrences

In class last Thursday we looked at three different methods for solving recurrences. On Slide 37, there are four recurrences that we didn't solve. Solve one or two of these.

3. Group participation

Was everyone in the group at the meeting and, if not, who was missing? What did your group do to ensure that everyone felt comfortable participating and that no one felt excluded or lost?