(CS140 - Assignment 2

Due: Sunday, 9/15 at 11:59pm

A MORE SUCCINCT PRoOF

THERE ARE INFINITE PRIME NUMBERS:

‘IF THERE WEREN'T INFIN
PRIMES, THAT OTHER PRooF ';f:

INFINITE PRIMES wouLON'T WORK .
*IT DOES WoRK

.'. THERE ARE INFINITE PRIMES

http://www.smbc-comics.com/index.php?db=comics&id=1099

This problem set should be done with a different partner than you worked with last week. If
you would like help finding a partner, reach out ASAP (no later than Thursday).

You must use ITEX to format your solution; one person should upload the pdf

. [5 points] Algorithm A has a running time described by the recurrence T'(n) = 77T(n/2) +n?.
A competing algorithm B has a running time described by the recurrence T'(n) = aT'(n/4) +
n?. What is the largest integer value for a such that B is asymptotically faster than A?

Explain your answer. (Hint: use the master method.)

. [10 points]| 3-part sort

Consider the following sorting algorithm: First sort the first two-thirds of the elements in
the array. Next sort the last two thirds of the array. Finally, sort the first two thirds again.
Notice that this algorithm does not allocate any extra memory; all the sorting is done inside
array A. Here’s the code:

ThreeSort (A,i,j)
if Afi] > A[j]
swap A[i] and A[j]



ifi+1>y

return
k=(—i+1)/3].
ThreeSort(A,i,j — k) Comment: Sort first two-thirds.
ThreeSort(A,i + k, j) Comment: Sort last two thirds.
ThreeSort(A,i,j — k) Comment: Sort first two-thirds again!

(a) Give an informal but convincing explanation (not a rigorous proof by induction) of why
the approach of sorting the first two-thirds of the array, then sorting the last two-thirds
of the array, and then sorting again the first two-thirds of the array yields a sorted array.
A few well-chosen sentences should suffice here.

(b) Find a recurrence relation for the worst-case running time of ThreeSort.
(¢) Solve the recurrence relation

(d) How does the worst-case running time of ThreeSort compare with the worst-case running
times of Insertion Sort, Selection Sort, and Mergesort?

3. [7 points] Halfsies

In some situations, there is not a natural ordering to the data so we can’t sort it, but we can
check equality (e.g. images). Given an array of elements A, we would like to determine if
there exists a value that occurs in more than half of the entries of the array. If so, return that
value, otherwise, return null. Assume you can only check equality of elements in the array
which takes time O(1).

Describe a divide-and-conquer algorithm whose running time is asymptotically better than
©(n?). Provide pseudocode and/or a clear English description of your algorithm and state
the worst case running time of your solution (in terms of © or O where appropriate) with
justification.

4. [10 points] Given a sorted list of unique integers A[l...n], determine if an entry exists such
that A[i] =i. If an entry exists, return the index, otherwise, return null. (Hint: You can do
better than O(n). Think divide-and-conquer.) Write pseudocode to solve this problem and
and state the worse case running time (in terms of © or O where appropriate). You will be
graded on the efficiency of your solutions.

5. [25 points] Stock Market Problem

You'’re given an array of numbers representing a stock’s prices over n days. You goal is
to identify the longest consecutive number of days during which the stock’s value does not
decrease. For example, consider the stock values below:

Day: i1 2 3 4 5 6 7 8
Value: 42 40 45 45 44 43 50 49

In this example, the length of the longest consecutive non-decreasing run is 3. This run goes
from day 2 to day 4.



(a) Briefly describe a very simple “naive” algorithm for this problem and explain why the
worst-case running time is O(n?).

(b) Describe a divide-and-conquer algorithm whose running time is asymptotically better
than ©(n?). Provide pseudocode and/or a clear English description of your algorithm.
(Note that your algorithm must be a divide-and-conquer algorithm. And yes there are
non-divide-and-conquer algorithms that are very, very good!)

Hint: Like writing recursive functions, when trying to come up with a divide-and-conquer
solution, assume that your algorithm works correctly on the divided parts. Then, how
do you construct your answer to the overall solution?

(c) Analyze the running time of your algorithm: what are tight bounds on the best and
worst, case behavior?

(Note that next week’s assignment will ask you to implement your divide-and-conquer algo-
rithm.)



