3/9/23

Amortized Analysis

David Kauchak | eeee
[X XX
cs140 |eeo

oo
Spring 2023 | ®

Admin
Assignment 2 back soon (sorry for the delay!)

Assignment 4 out soon due Sunday

Extensible array (38
EEEEEEEEEEEEEEn :

Sequential locations in memory in linear order

Elements are accessed via index
o Access of particular indices is O(1)

Say we want to implement an array that supports add (i.e.
addToBack)

o ArrayList or Vector in Java

o lists in Python, perl, Ruby, ...

How can we do it?

Extensible array

Idea 1: Each time we call add, create a new array one
element larger, copy the data over and add the element

Running time: ©(n)

3/9/23

Extensible array s

o0
[(TTTTTTITTTTTTITIT] :
Idea 2: Allocate extra, unused memory and save room to
add elements

For example: new ArrayList(2)

allocated for extra space for

Extensible array

Idea 2: Allocate extra, unused memory and save room to
add elements

Adding an item:

actual array calls to add - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Running time: (1) Problems?
Extensible array seic Extensible array seit

Idea 2: Allocate extra, unused memory and save room to
add elements

How much extra space do we allocate?

Too little, and we might run out (e.g. add 15 items)

Too much, and we waste lots of memory |deas?

[TTTTTTTTT Il :
Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy
For example: new ArrayList(2)

2
I

20
0

3/9/23

Extensible array

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy

For example: new ArrayList(2)

[(TTTITT I I TITIT]
L
T I Y I I TR

Running time: ©O(n)

Extensible array
[T T I TTTITTTITITT]

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy

For example: new ArrayList(2)

How much extra memory
should we allocate?

9 10
.) 4
Extensible array 33 HH
o0 - - o0
e Amortized analysls :
Challenge: most of the calls to add will be O(1) What does “amortize” mean?
am-or-tized am-or-tiz:ing
How else might we talk about runtime? Definition of AMORTIZE & [Huke
1 : to pay off (as a mortgage) gradually usually by periodic
payments of principal and interest or by payments to a
What is the average worst-case running time of a sinking fund
f dd) 2 :to gradually reduce or write off the cost or value of (as an
sequence or aaas: asset) <amortize goodwill> <amortize machinery>
o Note this is different than the average-case running — am-ortizable) adjective
time
11 12

3/9/23

Amortized analysis

There are many situations where the worst case running
time is bad

However, if we average the operations over n operations,
the average time is more reasonable

This is called amortized analysis

» This is different than average-case running time, which requires
probabilistic reasoning about input

o The worse case running time doesn’t change

What are the costs?

Insertion: 1 2 34567 89 10
size: 12448888 1616

cost:

13

17
What are the costs? s What are the costs? :
Insertion: 12 34567 8 9 10 Insertion: 1234567 89 10
size: 12448888 1616 size: 12448888 1616
costt 1231511191 basiccost: 1111111111
double cost: 0 1204 000 8 0
18

19

3/9/23

What are the costs? s

Insertion: 123456789 10

size: 124488881616
basiccost: 1111111111
doublecost: 0 120400080

What is the sum of basic cost for n operations?

What is the sum of the copy cost for n operations?

Amortized analysis :

More generally:

total_cost(n) = basic_cost(n) + double_cost(n)

— l

basic_cost(n) =n double_cost(n)=1+2+4+8+...+n= 2n

total_cost(n) = 3n over n operations:

amortized O(1)

20

21

Amortized analysis vs.
worse case :

What is the worse case of add?
o Still O(n)

e If you have an application that needs it to be O(1), this
implementation will not work!

amortized analysis give you the cost of n
operations (i.e. average cost) not the cost of any
individual operation

Extensible arrays :

What if instead of doubling the array, we add

instead increase the array by a fixed amount (call it
k) each time

Is the amortized run-time still O(1)?
e No!
o Why?

22

23

3/9/23

Amortized analysis
Consider the cost of n insertions for some constant k

total_cost(n) = basic_cost(n) + double_cost(n)

double_cost(n) =k+2k+3k+4k+5k+...+n

nik

basic_cost(n) = n

Amortized analysis
Consider the cost of n insertions for some constant k

total_cost(n) = n + Q(n?)
= Q(n?)

amortized Q(n)!

2
24 25
00 00
o000 o000
o0 L L
eo0e o0
- X o0
Accounting method : :
Each operation has an amount we charge to accomplish it (this is really
the run-time for this operation) .
Insertion: 1234567 89 10
We deduct from that charge the actual cost of the operation .
9 P size: 12448888 1616
If there i hing left t it in th k
ere is anything left over, put it in the ban cost 1231511191
An operation may also use the bank to offset the cost of the operation bank:
Key idea: charge more for low-cost operations and save that up to
offset the cost of expensive operations How much should we pay for each insert?
26 27

3/9/23

Insertion: 123456789 10
size: 12448888 1616
costt 1231511191
bank:

Insertion: |1 345678910
size:|112 4 488 88 1616

cost:]11231511191

bank:
Try insert: 2 Try insert: 2
How much is left?
28 29
i
Insertion: |1 345678910 Insertion: 1234567 89 10
size:|12 4 48 88 8 1616 size: 1|24 4 8 8 8 8 1616
cost:|[1231511191 cost: 12131511191
bank:| 1 bank: 1
Try insert: 2 Try insert: 2
How much is left?
30 31

3/9/23

Insertion: 1(123 4567 89 10
size: 1|24 4 8 8 8 8 1616
cost: 12131511191
bank: 1| 1

Try insert: 2

Insertion: 1 2|34 567 89 10
size: 1 2|44 888 8 1616
costt 1 2311511191
bank: 1 1/ 0

Try insert: 2

32 33
Insertion: 1 2 3[4 667 89 10 Insertion: 1 2 3 4567 8 9 10
size: 124|488 88 1616 size: 124 4|/88 88 1616
costt 1231H511191 cost: 1231511191
bank: 1 1 01 bank: 1 1 01
Try insert: 2 Try insert: 2
How much is left?
34 35

3/9/23

Insertion: 1 2 3 4|56 7 8 9 10
size: 12 4 4(8/8 8 8 1616
cost: 12315111191

Insertion: 1 2 34567 89 10
size: 12448888 1616
costt 1231511191

bank: 1 1 01 bank:
Try insert: 2 Try insert: ??
-2
36 37
i
Insertion: |1 345678910 Insertion: |1 345678910
size:|124 48888 1616 size:|1124 48888 1616
cost:|[1231511191 cost:([1123 1511191
bank: bank:| 2
Try insert: 3 Try insert: 3
How much is left?
38 39

3/9/23

Insertion: 1(123 4567 89 10
size: 1|24 4 8 8 8 8 1616
cost: 12131511191
bank: 2| 3

Try insert: 3

Insertion: 1 2|34 567 89 10
size: 1 2|44 888 8 1616
costt 1 2311511191
bank: 2 3| 3

Try insert: 3

40

41
Insertion: 1 2 3(4|56 7 8 9 10 Insertion: 1 2 3|14(56 7 8 9 10
size: 1 2 4/4(8 8 8 8 1616 size: 12 4/4/8 8 88 1616
cost: 12 3/1(511191 cost: 12 3[(11511191
bank: 2 3 bank: 2 3 35
Try insert: 3 Try insert: 3
42

43

10

3/9/23

Insertion: 1 2 3456 7 8/9(10
size: 1244888 8(1616
costt 1231511191
bank: 2 3 353579

Try insert: 3

Insertion: 1 2 34567 89|10
size: 1244888 8/1616
costt 1231511191
bank: 2 3 3 535793

Try insert: 3

44

45

Insertion: 1 2 3456 7 8/9(10
size: 1244888 8(1616
costt 1231511191
bank: 2 3 3535 79|3

Try insert: 3

Will this work??

Insertion: 1 2 34567 89 10
size: 12448888 1616
costt 1231511191

bank: 2 3353579
T Itl T d

last copy
happened here

1: pay for our operation

Getting ready for the copy:

1: pay for our copy

1: pay to copy from an item
first half

Try insert: 3

46

47

11

3/9/23

Accounting method

Insert pay 3 = O(1)!

Particularly useful when there are multiple
operations

Another set data structure

We want to support fast lookup and insertion (i.e. faster
than linear)

Arrays can easily made to be fast for one or the other
o fast search: keep list sorted
O(n) insert
O(log n) search
o fastinsert: extensible array
O(1) insert (amortized)
O(n) search

48

49

Another set data structure s

Idea: store data in a collection of arrays
e array i has size 2/
e an array is either full or empty (never partially full)
e each array is stored in sorted order
e no relationship between arrays

Another set data structure :

Which arrays are full and empty are based on the number of elements
« specifically, binary representation of the number of elements
o 4items =100 = A2-full, A1-empty, Ao-empty
o 11items = 1011 = As-full, A2-empty, As-full, Ao-full
Ao: [5]
A [4, 8]
Az: empty
Az [2,6,9, 12,13, 16, 20, 25]

Lookup: binary search through each array
e Worse case runtime?

50

51

12

3/9/23

Another set data structure

Ao: [5]

A [4, 8]

Az: empty

As:[2,6,9, 12,13, 16, 20, 25]

Lookup: binary search through each array

Worse case: all arrays are full
« number of arrays = number of digits = log n
o binary search cost for each array = O(log n)
e O(log n log n)

Another set data structure

Insert(A, item)

o startingati=0

o current = [item]

o aslong as the level i is full
merge current with Ai using merge procedure
store to current
Ai = empty
I++

e A =current

52

53

Insert 5

Ao: empty Insert

o startingati=0
« current = [item]

procedure
store to current
Ai = empty
i++

e Ai=current

o as long as the level i is full
merge current with Ai using merge

Insert 5

Aot [3] Insert

o startingati=0
o current = [item]

procedure
store to current
Ai = empty
i++

e Ai=current

o aslong as the level i is full
merge current with A; using merge

54

55

13

Insert 6

Ao: [5]

Insert
o
o

starting ati=0
current = [item]

as long as the level i is full
merge current with Ai using merge

Insert 6

Ao: empty
A [5, 6]

Insert
o startingati=0
o current = [item]

o aslong as the level i is full
merge current with A using merge

procedure procedure
store to current store to current
Ai = empty Ai = empty
i++ ++
o Ai=current e Ai=current
Ao: empty Insert Aot [12] Insert
A [5,6 N A
1 [’] o startingati=0 1 [5’ 6] o startingati=0

« current = [item] o current = [item]

o aslong as the level i is full o aslong as the level i is full
merge current with Ai using merge merge current with A; using merge
procedure procedure
store to current store to current
Ai = empty Ai = empty
i++ i+

o Ai=current e Ai=current

3/9/23

14

Insert 4

Ao: [12]
A [5, 6]

Insert
o startingati=0
o current = [item]

o aslong as the level i is full
merge current with Ai using merge

Insert 4

Ao: empty
Aq: empty
Az [4,5,6,12]

Insert
o
o

starting ati=0
current = [item]

as long as the level i is full
merge current with A using merge

procedure procedure
store to current store to current
Ai = empty Ai = empty
o Ai=current e Ai=current
60 61
Insert 23 Insert 23
ﬁo: empty Insert ﬁﬂ: [23] Insert
1. empty «+ statingati=0 1: émpty » startingati=0
A2 [4,5,6,12] « current = [item] A2 [4,5,6,12]

o as long as the level i is full
merge current with Ai using merge
procedure
store to current
Ai = empty
i++
e Ai=current

current = [item]
as long as the level i is full
merge current with A; using merge
procedure
store to current
Ai = empty
i++
Ai = current

62

63

3/9/23

15

3/9/23

Another set data structure

Insert

o startingati=0

o current = [item]

o aslong as the level i is full
merge current with Ai using merge procedure
store to current
Ai = empty
i++

e A =current

running time?

Insert running time
Worst case

e merge at each level
e 2+4+8+...+n/2+n=0(n)

There are many insertions that won't fall into this
worse case

What is the amortized worse case for insertion?

64 65
insert: amortized analysis :: insert: amortized analysis -
Consider inserting n numbers Consider inserting n numbers times
e how many times will A, be empty? e how many times will A, be empty? n/2

o how many times will we need to merge with A,?
o how many times will we need to merge with A;?
o how many times will we need to merge with A,?

e how many times will we need to merge with Agg »?

e how many times will we need to merge with A,? n/2
e how many times will we need to merge with A;? n/4
e how many times will we need to merge with A,? n/8

e how many times will we need to merge with Ag,? 1

cost of each of these steps?

66

67

16

3/9/23

e Consider inserting n numbers

insert: amortized analysis

how many times will A, be empty? n/2
how many times will we need to merge with A,? n/2
how many times will we need to merge with A;? n/4
how many times will we need to merge with A,? n/8

how many times will we need to merge with Ag,? 1

total cost:

times

cost
o(1)
2

4
8

insert: amortized analysis

e Consider inserting n numbers times
how many times will A, be empty? n/2

e how many times will we need to merge with A,? n/2
e how many times will we need to merge with A;? n/4
e how many times will we need to merge with A,? n/8

e how many times will we need to merge with Ag,? 1

total cost:

log n levels * O(n) each level
O(n log n) cost for n inserts
O(log n) amortized cost!

cost
o(1)

68

69

17

