

1

Extensible array	
Sequential locations in memory in linear order	
Elements are accessed via index	
- Access of particular indices is O(1)	
Say we want to implement an array that supports add (i.e.	
addToBack)	
• ArrayList or Vector in Java	
- lists in Python, perl, Ruby, ...	
How can we do it?	

3

2

4

5

7

6

8

9

10

Extensible array

Challenge: most of the calls to add will be $\mathrm{O}(1)$

How else might we talk about runtime?

What is the average worst-case running time of a sequence of adds?

- Note this is different than the average-case running time

Amortized analysis

What does "amortize" mean?
am-or-tized am-or-tiz•ing
Definition of AMORTIZE 区 [Like
1 : to pay off (as a mortgage) gradually usually by periodic payments of principal and interest or by payments to a sinking fund

2 : to gradually reduce or write off the cost or value of (as an asset) <amortize goodwill> <amortize machinery>

- am•or-tiz•able adn adjective

	Amortized analysis
There are many situations where the worst case running	
time is bad	
However, if we average the operations over n operations,	
the average time is more reasonable	
This is called amortized analysis	
- This is different than average-case running time, which requires	
probabilistic reasoning about input	
- The worse case running time doesn't change	

13

What are the costs?

Assume we start with an array of size 1
Insertion: 12345678910
size: 124488881616
cost: 1231511191

18

17

What are the costs?

Insertion: 12345678910
size: 124488881616
basic cost: $1 \begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
double cost: 0120400080

19

What are the costs?

Amortized analysis

More generally:

20

Amortized analysis vs.

 worse caseWhat is the worse case of add?

- Still O(n)
- If you have an application that needs it to be $O(1)$, this implementation will not work!
amortized analysis give you the cost of n operations (i.e. average cost) not the cost of any individual operation

Extensible arrays

What if instead of doubling the array, we add instead increase the array by a fixed amount (call it k) each time

Is the amortized run-time still $O(1)$?

- No!
- Why?
Consider the cost of n insertions for some constant k

24

Accounting method
 Each operation has an amount we charge to accomplish it（this is really the run－time for this operation）
 We deduct from that charge the actual cost of the operation
 If there is anything left over，put it in the bank
 An operation may also use the bank to offset the cost of the operation
 Key idea：charge more for low－cost operations and save that up to offset the cost of expensive operations

Amortized analysis

Consider the cost of n insertions for some constant k

$$
\begin{aligned}
\operatorname{total} l_{-} \operatorname{cost}(n) & =\mathrm{n}+\Omega\left(\mathrm{n}^{2}\right) \\
& =\Omega\left(\mathrm{n}^{2}\right)
\end{aligned}
$$

amortized $\Omega(n)$ ！

25

Insertion： 12345678910
size： 124488881616
cost： 1231511191
bank：

How much should we pay for each insert？

27

28

29

30

31

32

34

33

35

36

37

44

45

Insertion: $1 2 3 4 4 5 6 7 8 \longdiv { 9 1 0 }$
size: 1224488881616

cost: 1	2	3	1	5	1	1	1	9	1

bank: 233535793

Try insert: 3
Will this work??

46

47

Accounting method

Insert pay 3 = $\mathrm{O}(1)$!

Particularly useful when there are multiple operations

Another set data structure

We want to support fast lookup and insertion (i.e. faster than linear)

Arrays can easily made to be fast for one or the other

- fast search: keep list sorted
- $O(n)$ insert
- O(log n) search
- fast insert: extensible array
- O(1) insert (amortized)
- O(n) search

48
49

Another set data structure

Idea: store data in a collection of arrays

- array i has size 2^{i}
- an array is either full or empty (never partially full)
- each array is stored in sorted order
- no relationship between arrays

Another set data structure

Which arrays are full and empty are based on the number of elements

- specifically, binary representation of the number of elements
- 4 items $=100=$ A2-full, A1-empty, Ao-empty
- 11 items $=1011$ = A3-full, A2-empty, A1-full, Ao-full
A_{0} : [5]
$\mathrm{A}_{1}:[4,8]$
A_{2} : empty
$\mathrm{A}_{3}:[2,6,9,12,13,16,20,25]$

Lookup: binary search through each array

- Worse case runtime?

Another set data structure	
A_{A} : [5] $\mathrm{A}_{1}:[4,8]$ A_{2} : empty $\mathrm{A}_{3}:[2,6,9,12,13,16,20,25]$	
Lookup: binary search through each array	
Worse case: all arrays are full - number of arrays $=$ number of digits $=\log \mathrm{n}$ - binary search cost for each array $=\mathrm{O}(\log \mathrm{n})$ - $\mathrm{O}(\log \mathrm{n} \log \mathrm{n})$	

52

54

53

Insert 5 A_{0} : [5]	Insert - starting at $i=0$ - current $=[$ item $]$ - as long as the level \bar{i} is full - merge current with A i using merge procedure - store to current - $A_{i}=$ empty i++ - $A_{i}=$ current

55

56

58

57

59

60

Insert 23	
A_{0} : empty A_{1} : empty $\mathrm{A}_{2}:[4,5,6,12]$	Insert - starting at $\mathrm{i}=0$ - current = [item] - as long as the level i is full - merge current with Ai using merge procedure - store to current - $A_{i}=$ empty - i++ - $A_{i}=$ current

62

61

63

Another set data structure	
Insert - starting at $\mathrm{i}=0$ - current $=[$ item $]$ - as long as the level i is full - merge current with A using merge procedure - store to current - $A_{i}=$ empty - i++ - $A_{i}=$ current running time?	

64

Insert running time

Worst case

- merge at each level
- $2+4+8+\ldots+n / 2+n=O(n)$

There are many insertions that won't fall into this worse case

What is the amortized worse case for insertion?

65

insert: amortized analysis

Consider inserting n numbers

- how many times will A_{0} be empty?
- how many times will we need to merge with A_{0} ?
- how many times will we need to merge with A_{1} ?
- how many times will we need to merge with A_{2} ?
- how many times will we need to merge with $\mathrm{A}_{\log \mathrm{n}}$?

insert: amortized analysis

Consider inserting n numbers times

- how many times will A_{0} be empty? $\mathrm{n} / 2$
- how many times will we need to merge with A_{0} ? $\mathrm{n} / 2$
- how many times will we need to merge with A_{1} ? $\mathrm{n} / 4$
- how many times will we need to merge with A_{2} ? $\mathrm{n} / 8$
- how many times will we need to merge with $\mathrm{A}_{\log \mathrm{n}}$? 1
cost of each of these steps?

67

insert: amortized analysis	
- Consider inserting n numbers - how many times will A_{0} be empty? - how many times will we need to merge with A_{0} ? $\mathrm{n} / 2$ - how many times will we need to merge with A_{1} ? $\mathrm{n} / 4$ - how many times will we need to merge with A_{2} ? $\mathrm{n} / 8$ - ... - how many times will we need to merge with $\mathrm{A}_{\log \mathrm{n}}$? 1 total cost:	cost O(1) 2 4 8 n

68

insert: amortized analysis	
- Consider inserting n numbers - how many times will A_{0} be empty? - how many times will we need to merge with A_{0} ? $\mathrm{n} / 2$ - how many times will we need to merge with A_{1} ? $\mathrm{n} / 4$ - how many times will we need to merge with A_{2} ? $\mathrm{n} / 8$ - ... - how many times will we need to merge with $\mathrm{A}_{\text {og }}$? 1 total cost: $\log n$ levels * $O(n)$ each level O(n log n) cost for n inserts O(logn) amortized cost!	cost $\mathrm{O}(1)$ 2 4 8 n

69

