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Binary Search Trees Example
o | .

BST — A binary tree where a parent’s value is greater than all
values in the left subtree and less than or equal to all the values in
the right subtree

leftTree(i) < i <rightTree(i)
and the left and right children are also binary search trees

Why not?
leftTree(i) < i < rightTree(i)

Can be implemented with with
Ambiguous about where elements that are equal would reside references or an array
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2
What else can we conclude? Another example: the solo tree
| ] |
leftTree(i) < i < rightTree(i) @
e The smallest element is the left-
most element
e @ The largest element is the right-
most element
5 6
Another example: the twig Operations
| ] |
a Search(Tk) — Does value k exist in tree T
Insert(T,k) — Insert value k into tree T
Delete(T,x) — Delete node x from tree T
6 Minimum(T) — What is the smallest value in the tree?

Maximum(T) — What is the largest value in the tree?
Successor(T,x) — What is the next element in sorted order after x
Predecessor(T,x) — What is the previous element in sorted order of x
Median(T) = return the median of the values in tree T

7 8
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Search

How do we find an element?

BSTSEARCH(z, k)

1 ifz=nullork==z

2 return x

3 elseif k<z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSEARCH(RIGHT(x), k)

Finding an element

Search(T, 9) @
(8 ©

BSTSEARCH(z, k)

1 ifz=nullork=2z

2 return x

3 elseif k <z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSEARCH(RIGHT(x), k)

10

Finding an element

Search(T, 9)

BSTSEARCH(z, k)

1 ifz=nullork=x

2 return x

3 elseif k <z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSEARCH(RIGHT(x), k)

Finding an element

|
Search(T, 9)

BSTSEARCH(z, k) 9>127
1 ifz=nullork=2z
2 return x
[[38 elseif k<z
4 return BSTSEARCH(LEFT(x), k)
5 else
6 return BSTSEARCH(RIGHT(x), k)

11

12
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Finding an element

Search(T, 9) @
©, ©

BSTSEARCH(z, k)

1 ifz=nullork=2z

2 return x

3 elseif k<z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSEARCH(RIGHT(x), k)

Finding an element

Search(T, 9) @
(8 ©

BSTSEARCH(z, k)

1 ifz=nullork=2z

2 return x

3 elseif k <z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSEARCH(RIGHT(x), k)

13

14

Finding an element

| ]
Search(T, 9)

BSTSEARCH(z, k)

1 ifz=nullork=2x

2 return x

3 elseif k <z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSEARCH(RIGHT(x), k)

Finding an element

|
Search(T, 13)

BSTSEARCH(z, k)

1 ifz=nullork=2z

2 return x

3 elseif k <z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSEARCH(RIGHT(x), k)

15

16
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Finding an element

Search(T, 13) @
©, ©

BSTSEARCH(z, k)

1 ifz=nullork=2z

2 return x

3 elseif k<z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSEARCH(RIGHT(x), k)

Finding an element

Search(T, 13) @

BSTSEARCH(z, k)

1 ifz=nullork=2z

2 return x

3 elseif k <z

4 return BSTSEARCH(LEFT(x), k)
5 else

6 return BSTSEARCH(RIGHT(x), k)

17 18
lterative search Running time of BSTSearch

[ |

ITERATIVEBSTSEARCH(z, k) 2

1 while z # null and k # z Worst case?

2 ifk<z B(height of the tree)

3 z « LEFT(z)

4 else

5 z « RIGHT(z) Average case?

6 t

et e O(height of the tree)

BSTSEARCH(z, k)

1 ifz=nullork=z Best case?

2 return x

3 elseif k <z o(1)

4 return BSTSEARCH(LEFT(x), k)

5 else

6 return BSTSEARCH(RIGHT(x), k)
19 21
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Height of the tree

Worst case height?

n-1

“the twig"
Best case height?

[logzn|

complete (or near complete) binary tree
Average case height?

Depends on two things:
= the data

= how we build the treel

Insertion
[

Search and then insert when you find a “null” spot in the tree

22 23
Insertion Inserting duplicates
| ] |
BSTINSERT(T), z)
1 if RooT(T) = null Insert(T, 14)
2 RoOOT(T) «
3 else
4 y < Root(T)
5 while y # null
6 prev «—y
7 ifz<y
8 y < LEFT(y)
9 else
10 y «— RIGHT(y)
11 PARENT(z) « prev
12 if z < prev
13 LEFT(prev) « «
14 else
15 RIGHT(prev) « = i . . X
leftTree(i) <i<rightTree(i)
24 31
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Inserting duplicates

[
Insert(T, 14)

()
©

leftTree(i) <i=<rightTree(i)

Running time

Search and then insert when you find a “nul

O(height of the tree)

spot in the tree

32 33
Running time Running time
[ ==
Search and then insert when you find a “null” spot in the tree Insert(T, 15) a
O(height of the tree) a
Why not ©(height of the tree)?
34 35
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Height of the tree
|

Worst case: “the twig” — When will this happen?
P

Search and then insert when you find a “null” spot in the tree
Y P

Height of the tree
==
Best case: “complete” — When will this happen?

Search and then insert when you find a “null” spot in the tree

36 37
Height of the tree Min/Max
[ |
Average case for random data? BSTMin(z) ITERATIVEBSTMIN(z)
1 if LEFT(2) = null 1 while LEFT(z) # null
2 return x 2 x +— LEFT(x)
Search and then insert when you find a “null” spot in the tree 3 else 3 return x
4 return BSTMIN(LEFT(2))

Randomly inserting data into
a BST generates a tree on
average that is O(log n)

38
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Running time of min/max? Successor and predecessor
| |
BSTMin(z) ITERATIVEBSTMIN(z) Predecessor(12)? 9
1 if LEFT(z) = null 1 while LEFT(z) # null
2 return z 2 @ — LerT(z)
3 else 3 return x
4 return BSTMIN(LEFT(z))
O(height of the tree) a
56 57
Successor Gnd predecessor SUCCGSSOf'
| |

Predecessor in general?  largest node of all those
smaller than this node

rightmost element of

: the left subtree

Successor(12)? 13

AR

58

59
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Successor Successor
| |
Successor in general? smallest node of all those What if the node smallest node of all those
larger than this node doesn’t have a right larger than this node
subtree?
leftmost element of the leftmost element of the
@ right subtree a right subtree
60 61
Successor Successor
| |
What if the node
doesn’t have a right node is the largest successor is the node
subtree?
. . g that has x as a
the successor is the node
that has x as a predecessor
@ predecessor
62 63

10
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Successor Successor
| |
successor is the node successor is the node
that has x as a that has x as a
predecessor predecessor
64 65
Successor Successor
| |
keep going up until )
we're no longer a successor is the node SUCCESSOR(z)
right child that has x as a 1 if RIGHT(z) # null
predecessor 2 return BSTMIN(RIGHT(z))

3 else

4 y < PARENT(z)

5 while y # null and z = RIGHT(y)
6 Ty

7 y < PARENT(y)

8 returny

66

67

11
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Successor Successor
| ] |
SUCCESSOR(z) if we have a right SUCCESSOR(z) find the node that x is
1 if RiGaT() # null S”btlrlee't rit;‘hm t.heht 1 if RicuT(z) # null the predecessor of
2 return BSTMIN(RIGHT(z)) Sm; estorinerg 2 return BSTMIN(RIGHT(z))
3 else sublree 3 else ) .
4 y < PARENT(z) 4 y < PARENT(z) keep going up until
5 while y # null and z = RIGHT(y) 5 while y # null and z = RIGHT(y) we’re no longer a
6 Ty 6 Ty right child
7 y < PARENT(y) 7 y < PARENT(y)
8 returny 8 returny
68 69
Successor running time Deletion
| ] |
O(height of the tree)
SUCCESSOR(z) e @
1 if RIGHT(z) # null
2 return BSTMIN(RIGHT(z))
3 else
4 y < PARENT(z)
5 while y # null and z = RIGHT(y) °
6 Ty
7 y < PARENT(y)
8 returny Three cases!
70 71

12
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Deletion: case 1

No children

Just delete the node

0@@

Deletion: case 1

No children

Just delete the node

72 73
Deletion: case 2 Deletion: case 2
| ] |
One child One child
Splice out the node Splice out the node
74 75

13
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Deletion: case 3

Two children

Replace x with it’s successor

Deletion: case 3

Two children

Replace x with it's successor

76 77
Deletion: case 3 Height of the tree
[ |
Two children Most of the operations take time
O(height of the tree)
Will we always have a successor?
We said trees built from random data have height
O(log n), which is asymptotically tight
Why successor?
Larger than the left subtree Two problems:
Less than or equal fo right subtree We can’t always insure random data
What happens when we delete nodes and insert others
after building a tree?
78 79

14
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Balanced trees

Make sure that the trees remain balanced!

Red-black trees
AVL trees
2-3-4 trees

B-trees

Red-black trees: BST (plus some)

every node is either red or black

root is black

leaves (NIL) are black

if a node is red, both children are black

for every node, all paths from the node to descendant leaves
contain the same number of black nodes.

https:/ /en.wikipedia.org /wiki/Red—black_tree

80

81

Red-black trees: BST (plus some)

every node is either red or black

root is black

leaves (NIL) are black

if a node is red, both children are black

for every node, all paths from the node to descendant leaves
contain the same number of black nodes.

h(x): height of node X: number of edges in longest path
from x to a leaf

Red-black trees: BST (plus some)

h(x): height of node x: number of edges in longest path
from x to a leaf

What is the height of the root node?

82

83
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Red-black trees: BST (plus some)
=

h(x): height of node x: number of edges in longest path
from x to a leaf

Red-black trees: BST (plus some)
o

every node is either red or black

root is black

leaves (NIL) are black

if a node is red, both children are black

for every node, all paths from the node to descendant leaves
contain the same number of black nodes.

bh(x): black height of node x: number of black nodes on a
path from x to leaf (not including X)

4 Why don’t we say "path with the most...”2

84 85

Red-black trees: BST (plus some) Red-black trees: BST (plus some)
[ |

every node is either red or black

root is black

leaves (NIL) are black

if a node is red, both children are black

for every node, all paths from the node to descendant leaves

contain the same number of black nodes.

bh(x): black height of node x: number of black nodes on a bh(x): black height of node x: number of black nodes on a

path from x to leaf (not including x) path from x to leaf (not including X)

Why don’t we say "path with the most...”2 What is the black height of the root node?

86 87
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Red-black trees: BST (plus some)

bh(x): black height of node x: number of black nodes on a
path from x to leaf (not including x)

Bounding the height
[

every node is efther red or black (x): height of node x: number of edges in

root is black longest path from x to a leaf
leaves (NIL) are black

if a node is red, both children are black

for every node, all paths from the node to
descendant leaves contain the same number of
black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

bh(x): black height of node x: number of
black nodes on a path from X to leaf (not
including x)

Proof?

88

89

every node is either red or black

Bounding the height

R(x): height of node x: number of edges in
root is black longest path from x to a leaf
leaves (NIL) are black

if a node is red, both children are black bh(x): black height of node x: number of

black nod th f X to leaf t
for every node, all paths from the node to ack nodes on a path from x to leaf (no

descendant leaves contain the same number of
black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

Worst case: nodes alternate red/black
- root is black

including x)

- leaf is black

In terms of h(x): How many black nodes are
there on this path?

Bounding the height
[

every node is either red or black h(x): height of node x: number of edges in

root is black longest path from x to a leaf
leaves (NIL) are black

if a node is red, both children are black bh(x): black height of node x: number of

black nodes on a path from X to leaf (not

for every node, all paths from the node to including x)

descendant leaves contain the same number of
black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

Worst case: nodes alternate red/black [
- root is black [ ]
- leaf is black [ ]
[}
|

90

91
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Bounding the height

every node is either red or black R(x): height of node x: number of edges in

root is black longest path from x to a leaf
leaves (NIL) are black

if a node is red, both children are black bh(x): black height of node x: number of

black nod th fi X to leaf t
for every node, all paths from the node to ack nodes on a path from x to leaf (nof

descendant leaves contain the same number of
black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

including x)

Worst case: nodes alternate red/black [ ]

- root is black [}

- leaf is black [ ]
bh(x) = h(x)/2

[ ]

(Note that bh does not include the root) .

Bounding the height

every node is either red or black R(x): height of node x: number of edges in
root is black longest path from x to a leaf

leaves (NIL) are black

if a node is red, both children are black bh(x): black height of node x: number of

black nod th fi X to leaf (not
for every node, all paths from the node to ack nodes on a path from x to leaf (

descendant leaves contain the same number of
black nodes.

Claim 1: For every node x, bh(x) = h(x)/2

including x)

Worst case: nodes alternate red/black L]
- root is black ()
- leaf is black [
bh(x) = h(x)/2
We can remove red nodes, but ®
that would decrease h(x) u

92

93

Bounding the height

Claim 2: The subtree rooted at any node x contains at
least 257(X) — 1 internal (non-leaf) nodes

Proof2

Structural induction

Want to prove something about a
recursive structure (e.g., a tree)

94

95
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Structural induction
[

Proof by induction:

IH: Assume the property holds for
sub-structures (i.e., subtrees)

Show that it holds for the entire tree

A A

Structural induction
[

Base case is often the smallest
structure possible (e.g., a leaf)

A A

96

97

Bounding the height
fr

Claim 2: The subtree rooted at any node x contains at
least 257(X) — 1 internal (non-leaf) nodes

Bounding the height
[

Claim 2: The subtree rooted at any node X contains at

least 22" — 1 internal (non-leaf) nodes

Base case: leaf (h(x) = 0)

Base case:
bh(x) = 0 bh(x): black height of node x:
number of black nodes on a path
20 -1=0 from x to leaf (not including x)

19
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Bounding the height
fr

Claim 2: The subtree rooted at any node X contains at
least 257 — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0

IH: Assume 2P%0) — 1 for all y that are subtrees of x

What is bh(child(x)) wrt bh(x)?

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

Bounding the height
[

Claim 2: The subtree rooted at any node X contains at
least 25" — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0

IH: Assume 2P0 — 1 for all y that are subtrees of x

x is red: bh(child(x)) = bh(x) — 1

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

100 101
Bounding the height Bounding the height
[ |
x is red: bh(child(x)) =? x is red: bh(child(x)) = bh(x) — 1
bh(child(x)) bh(child(x)) bh(child(x)) @ @ bHh(child(x))
bh(x): black height of node x: number of black nodes on bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x) a path from x to leaf (not including x)
102 103

20
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Bounding the height
fr

x is black: bh(child(x)) =?

bh(child (x)) bh(child (x))

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

Bounding the height
[

x is black: bh(child(x)) = bh(x) or bh(x) — 1

bh(child(x)) (@ ® )Hh(hidx) @ @ Dh(child(x))

bh(x): black height of node x: number of black nodes on
a path from x to leaf (not including x)

104

105

Bounding the height
fr

Claim 2: The subtree rooted at any node x contains at
least 257(X) — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0

IH: Assume 2PR0) — 1 for all y that are subtrees of x

x is red: bh(child(x)) = bh(x) — 1
x is black: bh(child(x)) = bh(x) or bh(x) — 1

bh(child(x)) = bh(x) — 1

Bounding the height
==
Claim 2: The subtree rooted at any node X contains at
least 22" — 1 internal (non-leaf) nodes
Inductive case: h(x) > 0
IH: Assume 2P0 — 1 for all y that are subtrees of x
bh(child(x)) > bh(x) — 1
X

How many (internal
nodes are in this
tree (at least)?

106

107
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Bounding the height
fr

Claim 2: The subtree rooted at any node X contains at
least 257 — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0

IH: Assume 2P70) — 1 for all y that are subtrees of x
bh(child(x)) = bh(x) -1

x )1

2bh(x)—1 -1 th(x)—l -1

Bounding the height
[

Claim 2: The subtree rooted at any node X contains at
least 22" — 1 internal (non-leaf) nodes

Inductive case: h(x) > 0
IH: Assume 2P0 — 1 for all y that are subtrees of x

bh(child(x)) = bh(x) — 1

(2PR)-1_1) 4 (2bh()-1 _ 1) 4+ 1 = 2bh() 1

108

109

Bounding the height (almost there!)
fr

Claim 1: For every node x, bh(x) < h(ZL)

Claim 2: The subtree rooted at any node X contains at
least 2P7*) — 1 internal (non-leaf) nodes

How does this help us?

Bounding the height
[

Claim 1: For every node x, bh(x) = h(zL)

Claim 2: The subtree rooted at any node X contains at
least 2P*) — 1 internal (non-leaf) nodes

n =20 —q Claim 2
n >2h™/2 _q Claim 1
math

n+1 > 272

h(x) <2log(n+1) math

What does this mean?

110

111
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Bounding the height Can it be done?
[ |
every node is either red or black
root is black Can we maintain the red-black tree properties without
leaves (NIL) are black If we can maintain these making insertion and deletion more expensive?
if a node is red, both children are black ties: height O (lO n)
for every node, all paths from the node to properties: helg 3
descendant leaves contain the same number of
black nodes. e
Search ° e o 0
Insert Right Rotation
These all become O (logn) >
Delete <«
o e Left Rotation
Maximum e e
https:/ /en.wikipedia.org/wiki /Tree_rotation#/media/File:Tree_rotation.png

A quick example Number guessing game
[ |
I'm thinking of a number between 1 and n
You are trying to guess the answer
For each guess, I'll tell you “correct”, “higher” or “lower”
Describe an algorithm that minimizes the number of guesses
114 115
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https://www.youtube.com/watch?v=vDHFF4wjWYU

