
2/6/23

1

Order Statistics
David Kauchak

cs140
Spring 2023

1

Administrative
Assignment 2: how did it go?

Assignment 3 out soon

Pseudocode
l Make sure it’s understandable
l Use indenting where appropriate to highlight structure
l Consider using ”verbatim” to format

2

Medians
The median of a set of numbers is the number such that
half of the numbers are larger and half smaller

How might we calculate the median of a set?

Sort the numbers, then pick the n/2 element

A = [50, 12, 1, 97, 30]

A = [1, 12, 30, 50, 97]

runtime?

3

Medians
The median of a set of numbers is the number such that
half of the numbers are larger and half smaller

How might we calculate the median of a set?

Sort the numbers, then pick the n/2 element

A = [50, 12, 1, 97, 30]

A = [1, 12, 30, 50, 97]

Θ(n log n)

4

2/6/23

2

Selection
More general problem:
find the k-th smallest element in an array

l i.e. element where exactly k-1 things are smaller than it
l aka the “selection” problem
l can use this to find the median if we want

Can we solve this in a similar way?
l Yes, sort the data and take the kth element
l Θ(n log n)

5

Can we do better?
Are we doing more work than we need to?

To get the k-th element (or the median) by sorting, we’re
finding all the k-th elements at once

We just want the one!

Often when you find yourself doing more work than you
need to, there is a faster way (though not always)

6

selection problem
Our tools

l divide and conquer
l sorting algorithms
l other functions

l merge
l partition
l binary search

7

Partition
Partition takes Θ(n) time and performs a similar operation

given an element A[q], Partition can be seen as dividing the
array into three sets:

l < A[q]
l = A[q]
l > A[q]

Ideas?

8

2/6/23

3

An example

5 2 34 9 17 2 1 34 18 5 3 2 1 6 5

We’re looking for the 5th smallest

If we called partition, what would be the in three sets?

< 5:

= 5:

> 5:

9

An example

5 2 34 9 17 2 1 34 18 5 3 2 1 6 5

We’re looking for the 5th smallest

< 5: 2 2 1 3 2 1

= 5: 5 5 5

> 5: 34 9 17 34 18 6

Does this help us?

10

An example

5 2 34 9 17 2 1 34 18 5 3 2 1 6 5

We’re looking for the 5th smallest

< 5: 2 2 1 3 2 1

= 5: 5 5 5

> 5: 34 9 17 34 18 6

We know the 5th smallest
has to be in this set

11

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Return Selection(A, k, p, q-1)
else // k > relq

Return Selection(A, k-relq, q+1, r)

A: array of data
k: find the kth smallest
p,r: current span we’re exploring (initially 1, len(A))

12

2/6/23

4

Selection: divide and conquer
Call partition

l decide which of the three sets contains the answer we’re looking
for

l recurse

Like binary search on unsorted data

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Return Selection(A, k, p, q-1)
else // k > relq

Return Selection(A, k-relq, q+1, r)

?

13

relq
relq = q – p + 1

p r

q

Partition returns the
absolute index, we want
an index relative to the
current p (window start)

14

relq
relq = q – p + 1

p r

q

q – p + 1

Partition returns the
absolute index, we want
an index relative to the
current p (window start)

15

relq
relq = q – p + 1

p=5 r=9

q=7

What is relq?

Partition returns the
absolute index, we want
an index relative to the
current p (window start)

16

2/6/23

5

relq
relq = q – p + 1

p=5 r=9

q=7

7-5+1=3

Partition returns the
absolute index, we want
an index relative to the
current p (window start)

17

Selection: divide and conquer
Call partition

l decide which of the three sets contains the answer we’re looking
for

l recurse

Like binary search on unsorted data

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Return Selection(A, k, p, q-1)
else // k > relq

Return Selection(A, k-relq, q+1, r)

As we recurse, we
may update the k that
we’re looking for
because we update
the lower end

19

5 7 1 4 8 3 2 6

Selection(A, 3, 1, 8)

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Selection(A, k, p, q-1)
else // k > relq

Selection(A, k-relq, q+1, r)

1 2 3 4 5 6 7 8

20

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Selection(A, k, p, q-1)
else // k > relq

Selection(A, k-relq, q+1, r)

5 1 4 3 2 6 8 7

Selection(A, 3, 1, 8)

relq = 6 – 1 + 1 = 6

1 2 3 4 5 6 7 8

21

2/6/23

6

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Selection(A, k, p, q-1)
else // k > relq

Selection(A, k-relq, q+1, r)

Selection(A, 3, 1, 8)

5 1 4 3 2 6 8 7
1 2 3 4 5 6 7 8

relq = 6 – 1 + 1 = 6

22

Selection(A, 3, 1, 5)

5 1 4 3 2 6 8 7

At each call, discard
part of the array

1 2 3 4 5 6 7 8

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Selection(A, k, p, q-1)
else // k > relq

Selection(A, k-relq, q+1, r)

23

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Selection(A, k, p, q-1)
else // k > relq

Selection(A, k-relq, q+1, r)

Selection(A, 3, 1, 5)

1 2 4 3 5 6 8 7
1 2 3 4 5 6 7 8

relq = 2 – 1 + 1 = 2

24

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Selection(A, k, p, q-1)
else // k > relq

Selection(A, k-relq, q+1, r)

Selection(A, 1, 3, 5)

1 2 4 3 5 6 8 7
1 2 3 4 5 6 7 8

25

2/6/23

7

Selection(A, 1, 3, 5)

1 2 4 3 5 6 8 7
1 2 3 4 5 6 7 8

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Selection(A, k, p, q-1)
else // k > relq

Selection(A, k-relq, q+1, r)

26

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Selection(A, k, p, q-1)
else // k > relq

Selection(A, k-relq, q+1, r)

Selection(A, 1, 3, 5)

1 2 4 3 5 6 8 7
1 2 3 4 5 6 7 8

relq = 5 – 3 + 1 = 3

27

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Selection(A, k, p, q-1)
else // k > relq

Selection(A, k-relq, q+1, r)

Selection(A, 1, 3, 4)

1 2 4 3 5 6 8 7
1 2 3 4 5 6 7 8

28

Selection(A, 1, 3, 4)

1 2 4 3 5 6 8 7
1 2 3 4 5 6 7 8

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Selection(A, k, p, q-1)
else // k > relq

Selection(A, k-relq, q+1, r)

29

2/6/23

8

Selection(A, 1, 3, 4)

1 2 3 4 5 6 8 7
1 2 3 4 5 6 7 8

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Selection(A, k, p, q-1)
else // k > relq

Selection(A, k-relq, q+1, r)

30

Selection(A, k, p, r)

q ← Partition(A,p,r)
relq = q-p+1
if k = relq

Return A[q]
else if k < relq

Selection(A, k, p, q-1)
else // k > relq

Selection(A, k-relq, q+1, r)

Selection(A, 1, 3, 4)

1 2 3 4 5 6 8 7
1 2 3 4 5 6 7 8

relq = 3 – 3 + 1 = 1

31

Running time of Selection?
Best case?
We get lucky and the element at the end of the list is the
kth smallest element!

One call to partition: θ(n)

32

Running time of Selection?
Worst case?
Each call to Partition only reduces our search by 1

Recurrence?

O(n2)

)()1()(nnTnT Q+-=

33

2/6/23

9

Running time of Selection?
Worst case?
Each call to Partition only reduces our search by 1

When does this happen?
l sorted
l reverse sorted
l others…

34

How can randomness help us?

RSelection(A, k, p, r)

q ← RPartition(A,p,r)
if k = q

Return A[q]
else if k < q

Return Selection(A, k, p, q-1)
else // k > q

Return Selection(A, k, q+1, r)

35

Running time of RSelection?
Best case

l θ(n)
Worst case

l Still O(n2)
l As with Quicksort, we can get unlucky

Average case?

36

Average case
Depends on how much data we throw
away at each step

37

2/6/23

10

Average case
We’ll call a partition “good” if the pivot falls within within the
25th and 75th percentile

l a “good” partition throws away at least a quarter of the data
l Or, each of the partitions contains at least 25% of the data

What is the probability of a “good” partition?

Half of the elements lie within this range and half outside,
so 50% chance

38

Average case
Recall, that like Quicksort, we can absorb the
cost of a constant number of “bad” partitions

39

Average case
On average, how many times will Partition need to be
called before we get a good partition?

Let E be the number of times
Recurrence:

EE
2
11+=

...
16
1

8
1

4
1

2
11 +++++=

2=

half the time we get a good
partition on the first try and half
of the time, we have to try again

40

Mathematicians and beer
An infinite number of
mathematicians walk into a bar.
The first one orders a beer. The
second orders half a beer. The
third, a quarter of a beer. The
bartender says "You're all idiots",
and pours two beers.

41

2/6/23

11

Average case
If on average we can get a “good” partition ever
other time, what is the recurrence?

l recall the pivot of a “good” partition falls in the 25th

and 75th percentile

T (n) = T (3
4

 n)+O(n)

roll in the cost of the
“bad” partitions

We throw away at
least ¼ of the data

43

Which is?

T (n) = T (3 / 4n)+θ(n)

44

T (n) = T (3 / 4n)+Θ(n)

a =
b =

f(n) =

1
4/3
n

abnlog = n log4/31

= n0

is n =O(n0−ε)?
is n =Θ(n0)?
is n =Ω(n0+ε)?

)()(then ,0for)()(if loglog aa bb nnTnOnf Q=> = - ee

)log()(then),()(if loglog nnnTnnf aa bb Q=Q=
1for)()/(and 0for)()(if log <£> W= + cncfbnafnnf ab ee

))(()(then nfnT Q=

Case 3: Θ(n)

Average case running time!

45

Selection
Worst case: Θ(n2)

Best case: Θ(n)

Average case: Θ(n)

46

2/6/23

12

An aside…
Notice a trend?

T (n) = T (n / 2)+Θ(n)

T (n) = T (3 / 4n)+Θ(n)

Θ(n)

Θ(n)

47

T (n) = T (pn)+ f (n)
for 0 < p <1 and
f (n)∉Θ(1)

a =
b =

f(n) =

1
1/p
f(n)

abnlog = n log1/p1

= n

)()(then ,0for)()(if loglog aa bb nnTnOnf Q=> = - ee

)log()(then),()(if loglog nnnTnnf aa bb Q=Q=
1for)()/(and 0for)()(if log <£> W= + cncfbnafnnf ab ee

))(()(then nfnT Q=

Case 3: Θ(f(n))

0

48

Divide and conquer strategy
Split data in half and recurse on two halves

Assume it works! How do we get the answer to
the entire problem?

l Often have to do a bit of extra work
l Be careful about solutions that could

span/combine the two halves

49

Data structures
What is a data structure?

Way of storing data that facilitates
particular operations

50

2/6/23

13

Data structures
What are some of the data structures that
you’ve seen?

51

Data structures review
List

Ordered Set

Heap

Unordered Set

1. What operations do they
support?

2. What are they good at?

3. How can we implement them?
(Are there variations?)

4. What are the runtimes for the
operations? (Do variations
matter?)

52

Lists
get/set at index

append (add at the end of the list)

remove

add/insert

53

Ordered Set
insert

remove

contains

next/prev (successor/predecessor)

54

2/6/23

14

Heap
insert

remove

min/max

55

Unordered Set
insert

remove

contains

56

