

1

Test taking advice

\square Read the questions carefully!
Don't spend too much time on any problem \square if you get stuck, move on and come back
\square When you finish answering a question, reread the question and make sure that you answered everything the question asked
\square Think about how you might be able to reuse an existing algorithm/approach
\square Show your work (I can't give you partial credit if I can't figure out what went wrong)
\square Don't rely on the book/notes for conceptual things - Do rely on the notes for a run-time you may not remember, etc.

Admin

Final
\square posted on Gradescope
\square due Wednesday (4/10) at 11:59pm (seniors: $4 / 4$ at noon)
\square time-limited (3 hours - with some flexibility to scan, etc.)
\square You may use:

- the book
- your notes
the class notes
- the assignments
- ONLY these things
\square Do NOT discuss it with anyone until after Wednesday at 11:59pm

2

High-level approaches

Algorithm tools

\square Divide and conquer

- assume that we have a solver, but that can only solve subproblems
- define the current problem with respect to smaller problems
- Key: sub-problems should be non-overlapping
\square Dynamic programming
- Same as above
- Key difference: sub-problems are overlapping
- Once you have this recursive relationship:
- figure out the data structure to store sub-problem solutions
- work from bottom up (or memoize)

High-level approaches

Algorithm tools cont.
\square Greedy

- Same idea: most greedy problems can be solve using dynamic programming (but generally slower)
- Key difference: Can decide between overlapping subproblems without having to calculate them (i.e. we can make a local decision)
\square Flow
- Min-capacity cut
- Bottleneck edge
- Matching problems
- Numerical maximization/minimization problems
\square Linear programming (very light coverage)

5

Data structures
Min/max?
\square heap
\square binomial heaps
Fast insert/delete at positions?
\square linked list
Others
\square stacks/queues
\square extensible data structures
\square balanced BSTs
\square disioint sets

7

Data structures

A data structure

\square Stores data
\square Supports access to/questions about data efficiently

- the different bias towards different actions
\square No single best data structure
Fast access/lookup?
- If keys are sequential: array
\square If keys are non-sequential or non-numerical: hashtable
\square Guaranteed run-time/ordered: balanced binary search tree

6

8

Graphs

Graph algorithms cont.

\square minimum spanning trees (Prim's, Kruskal's)

- shortest paths
- single source (BFS, Dijskstra's, Bellman-Ford)
- all pairs (Johnson's, Floyd-Warshall)
\square topological sort
- flow

9

Proofs: general

Be clear and concise

Make sure you state assumptions and justify each step

Make sure when you're done you've shown what you need to show

Other topics...

Analysis tools

\square recurrences (master method, recurrence trees)
\square big-O
\square amortized analysis

NP-completeness
\square proving NP-completeness
\square reductions

10

12

Prof by induction: structural

[5 points] A full binary tree is a tree where every node is either a leaf or has two
children. (Note this is different than a complete binary tree where all levels are full.) Prove using induction that in a full binary tree the number of internal nodes, I, is equal to the number of leaves, L, minus 1, i.e., $I=L-1$.

State what you're trying to prove We show that XXX using proof by induction
2. Prove base case
3. State the inductive hypothesis
4. Inductive proof

State what you want to show (may include a variable change,
e.g., k in instead of n)

Show a step by step derivation from the left hand side resulting in the right hand side. Give justifications for steps that are nontrivial

Other (important) places we saw proofs

Recurrences (substitution method)
Big O (needed find constants $\mathrm{c} \mathrm{n}_{0}$)

Greedy algorithm correctness (proof by contradiction or stays ahead-induction -)

Proof of algorithm correctness (MSTs, Flow)
NP-completeness (proving correctness of reductions)

15

Recurrences
$T(n)=2 T(n / 3)+d$
$T(n)=a T(n / b)+f(n)$
if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for $\varepsilon>0$ and $a f(n / b) \leq c f(n)$ for $c<1$ then $T(n)=\Theta(f(n))$

$$
T(n)=T(n-1)+\log n
$$

Dynamic programming

Method for solving problems where optimal solutions can be defined in terms of optimal solutions to subproblems

AND
the subproblems are overlapping

Local decisions result in different subproblems. Not obvious how to make the first choice.

17

All-pairs shortest paths

V * Bellman-Ford: $\mathrm{O}\left(\mathrm{V}^{2} \mathrm{E}\right)$

Floyd-Warshall: $\theta\left(\mathrm{V}^{3}\right)$

Johnson's: $O\left(V^{2} \log V+V E\right)$

DP advice

Write the recursive definition
What is the input/output to the problem?
What would a solution look like? What are the options for picking the first component of a solution?
Assume you have a solver for subproblems. How can you combine the first decision with answer to subproblem.

Define DP structure: what are subproblems indexed by?

State how to fill in the table (including base cases and where the answer is)

18

Floyd-Warshll: Recursive relationship
$d_{i j}{ }^{k}=$ shortest path from vertex i to vertex j using only vertices $\{1,2, \ldots, k\}$

Two options:

1) Vertex k+1 doesn't give us a shorter path
2) Vertex $k+1$ does give us a shorter path
$d_{i j}^{k+1}=\min \left(d_{i j}^{k}, d_{i(k+1)}^{k}+d_{(k+1) j}{ }^{k}\right)$

Pick whichever is shorter

20

Floyd-Warshall

Calculate $d_{i j}{ }^{k}$ for increasing k , i.e. $\mathrm{k}=1$ to V
Floyd-Warshall(G = (V,E,W)):
$d^{0}=W \quad / /$ initialize with edge weights
for $k=1$ to V
for $i=1$ to V
for $j=1$ to V $\operatorname{dijk}=\min \left(d_{i j}{ }^{k-1}, d_{i k}{ }^{k-1}+d_{k j}{ }^{k-1}\right)$
return d^{V}
21

Flow graph/networks

Flow network
\square directed, weighted graph (V, E)
\square positive edge weights indicating the "capacity" (generally, assume integers)
\square contains a single source $s \in V$ with no incoming edges
\square contains a single sink/target $t \in \mathrm{~V}$ with no outgoing edges
\square every vertex is on a path from s to t

23

Johnson's algorithm

Create G ' with one extra node s with 0 weight edges to all nodes run Bellman-Ford(G',s)
if no negative-weight cycle
reweight edges in G with $h(v)=$ shortest path from s to v $\hat{w}(u, v)=w(u, v)+h(u)-h(v)$
run Dijkstra's from every vertex
reweight shortest paths based on G

22

24

Network flow properties

If one of these is true then all are true (i.e. each implies the the others):
f is a maximum flow
G_{f} (residual graph) has no paths from s to \dagger
$|f|=$ minimum capacity cut

25

Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite graph

27

Application: bipartite graph matching

Bipartite graph - a graph where every vertex can be partitioned into two sets X and Y such that all edges connect a vertex $u \in X$ and a vertex $v \in Y$

26

28

29

31

NP-Complete

A problem is NP-Complete if

1. It is in NP (verifiable in polynomial time)
2. It is NP-Hard (there exists a polynomial-time reduction from all known NP-Hard problems)

- (We can show this by showing a reduction from just one NP-Hard problem)

30

How many slides this semester?
(1)

32

