

1

Final logistics

Available on Monday via Gradescope

Graduating seniors: must take by Thursday (4/4) at noon

Everyone else: must take by end of day on Wednesday (4/10)

Open notes, book, assignments

3 hours to take the exam

Review slides posted for Monday which includes overview of topics

Admin

Assignment 11 (last one)

LCs

Monday: review

Wednesday: No class - office hours

2

Linear programming

A linear function is a function of n variables defined by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

A linear equality is a linear function with an equality constraint

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b
$$

A linear inequality is a linear function with an inequality constraint

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \leq b \\
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \geq b
\end{aligned}
$$

Linear programming
A linear programming problem consists of two parts
1. a linear function to maximize or minimize
maximize $c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$
2. subject to a set of linear constraints
$a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b$
$a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b$
\ldots
$a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \geq b$

5

For example

7

For example

maximize $x_{1}+x_{2} \quad$ objective function
subject to

$$
\left.\begin{array}{rl}
4 x_{1}-x_{2} & \leq \\
2 x_{1}+x_{2} & \leq 10 \\
5 x_{1}-2 x_{2} & \geq-2 \\
x_{1}, x_{2} & \geq 0
\end{array}\right\} \text { constraints }
$$

6

For example

8

9
For example

$$
\begin{aligned}
& \square \square x_{2} \\
& \operatorname{maximize} x_{1}+x_{2} \\
& \text { subject to } \\
& 4 x_{1}-x_{2} \leq 8 \\
& \begin{aligned}
2 x_{1}+x_{2} & \leq 10 \\
5 x_{1}-2 x_{2} & \geq-2 \\
x_{1}, x_{2} & \geq 0
\end{aligned} \\
& x_{2} \leq \frac{5}{2} x_{1}+1
\end{aligned}
$$

11

For example

$\operatorname{maximize} x_{1}+x_{2}$ subject to

$$
\begin{aligned}
4 x_{1}-x_{2} & \leq 8 \\
\hline 2 x_{1}+x_{2} & \leq 10 \\
5 x_{1}-2 x_{2} & \geq-2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

$$
x_{2} \leq-2 x_{1}+10
$$

10

For example

12

13

Another example

A chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits?

How many variables do we need to model the problem?

Another example

A chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits?

14

Another example

A chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits?
$x_{1}=$ number of boxes per day of basic
$x_{2}=$ number of boxes per day of deluxe

Another example

A chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits?

What are the constraints?

17

Another example

chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits?

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400
\end{aligned}
$$

any others?

Another example

A chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits?
$x_{1} \leq 200$
$x_{2} \leq 300$

18

Another example

A chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits?

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

What function are we trying to maximize/minimize?

Another example
A chocolatier has two products: a basic product and a deluxe. The company makes x_{1} boxes of the basic per day at a profit of $\$ 1$ each and x_{2} boxes of the deluxe at a profit of $\$ 6$ each. The daily demand is 200 of the basic and 300 of the deluxe. The workforce can create 400 boxes of chocolate per day. How much of each should they create to maximize profits? $\begin{aligned} & \text { maximize } x_{1}+6 x_{2} \\ & \text { subject to } \\ & x_{1} \leq 200 \\ & x_{2} \leq 300 \\ & x_{1}+x_{2} \leq 400 \\ & x_{1}, x_{2} \geq 0 \end{aligned}$

21

23

Another example

22

24
maximize $x_{1}+6 x_{2}$
subject to
$x_{1} \leq 200$
$x_{2} \leq 300$
$x_{1}+x_{2} \leq 400$
$x_{1}, x_{2} \geq 0$

25

Solutions to LPs

A solution to an LP is a verlex on the feasibility polygon

- the very last feasible point in the direction of improving objective function

27

26

28

29

31

Solutions to LPs

A solution to an LP is a vertex on the feasibility polygon

- the very last feasible point in the direction of improving objective function
Except?
maximize $x_{1}+6 x_{2}$
subject to linear program is infeasible
$x_{1} \leq 1$
$x_{1} \geq 2$
...

30

32

More products

The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material.

Introduce a new variable x_{3}
maximize $x_{1}+6 x_{2}$
subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400
x_{1}, x_{2}, x_{3}	≥ 0

33

More products

The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material.

Introduce a new constraint
maximize $x_{1}+6 x_{2}$
subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

More products

The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material.

Introduce a new constraint
maximize $x_{1}+6 x_{2}$
subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400
x_{1}, x_{2}, x_{3}	≥ 0

34

More products

The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material.
maximize $x_{1}+6 x_{2}$
subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

36

More products
The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material. $\begin{aligned} & \begin{aligned} & \operatorname{maximize} x_{1}+6 x_{2} \\ & \text { subject to } \\ & x_{1} \leq 200 \\ & x_{2} \leq 300 \\ & x_{1}+x_{2}+x_{3} \leq 400 \\ & x_{2}+3 x_{3} \leq 600 \\ & x_{1}, x_{2}, x_{3} \geq 0 \end{aligned} \end{aligned}$ modify existing constraints

37

More products

The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material.
maximize $x_{1}+6 x_{2}+13 x_{3} \quad$ modify the objective function
subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

39

More products

The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material.

$$
\operatorname{maximize} x_{1}+6 x_{2}
$$

Anything else?
subject to

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2}+x_{3} & \leq 400 \\
x_{2}+3 x_{3} & \leq 600 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

38

More products

The chocolatier decides to introduce a third product line called premium with a profit of $\$ 13$. We still can only produce 400 units per day. The deluxe and premium products require the same packaging machinery. Deluxe uses one unit and premium uses 3 units. We have a total of 600 units a day of this packaging material.
maximize $x_{1}+6 x_{2}+13 x_{3}$
subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

40

41

Feasibility region

For n variables, the feasibility region is a polyhedron in R^{n} (i.e. n -dimensional space)
Each constraint defines a $\mathrm{R}^{\mathrm{n}-1}$ plane and the inequality a half-space on one side of the plane
$\operatorname{maximize} x_{1}+6 x_{2}+13 x_{3}$ subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

43

Feasibility region

For n variables, the feasibility region is a polyhedron in R^{n} (i.e. n-dimensional space)
Each constraint defines a $\mathrm{R}^{\mathrm{n}-1}$ plane and the inequality a half-space on one side of the plane
maximize $x_{1}+6 x_{2}+13 x_{3}$ subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

42

Feasibility region

For n variables, the feasibility region is a polyhedron in R^{n} (i.e. n-dimensional space)

Each constraint defines a $\mathrm{R}^{\mathrm{n}-1}$ plane and the inequality a half-space on one side of the plane
maximize $x_{1}+6 x_{2}+13 x_{3}$ subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

44

45

Solving linear programs

If a solution exists, a vertex of the feasibility space is an optimal solution

Because the objective function is linear, we can use a hill-climbing or greedy approach by starting at one vertex and moving to an adjacent vertex that improves the object function

When we're on top of the "hill", i.e. we cannot move to a better neighboring vertex, we're done

The simplex method does exactly this

46

Feasibility region

For n variables, the feasibility region is a polyhedron in R^{n} (i.e. n-dimensional space)
Each constraint defines a R^{n-1} plane and the inequality a half-space on one side of the plane
maximize $x_{1}+6 x_{2}+13 x_{3}$ subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}+x_{3}$	≤ 400
$x_{2}+3 x_{3}$	≤ 600
x_{1}, x_{2}, x_{3}	≥ 0

Simplex method

Start: [0,0]

Objective score:
$\operatorname{maximize} x_{1}+x_{2}$
subject to

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400
x_{1}, x_{2}	≥ 0

56

57

59

58

60

61

63

62

64

65

67

66

Running time of simplex

Worst case is exponential

There are theoretical examples that can be created where the running time is exponential

In practice, the algorithm is much faster

68

Other LP solvers
Many other LP algorithms exist - ellipsoid algorithm interior point methods (many of these)
Both of the above algorithms are O(polynomial time)
State of the art run-times are a toss up between interior point methods and simplex solvers

69

71

Another example

Carpet company: From our analysts, we're given carpet demand estimates for the next calendar year: $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$. The company has 30 employees, each of which makes 20 carpets per month and gets paid $\$ 2000 / \mathrm{mo}$.

The demand fluctuates from month to month. We can handle this demand in three ways:

- Overtime: Overtime costs 80% more than regular pay. Workers can put in at mos 30\% overtime
- Hiring and firing, at a cost of $\$ 320$ and $\$ 400$ respectively per worker
- Store extra carpets at a cost of $\$ 8$ per carpet per month. We must end the year without any stored carpets.

70

References

- [1] Algorithms (2008). Sanjoy Dasgupta, Christos

Papadimitiou and Umesh Vazirani.

