

1

P problems

$P=$ problems with a polynomial runtime solution

Also, called "tractable" problems
(Basically, all of the problems in this class)

3

Admin

Guest lecture on Thursday

Assignment 11 out today (last one!)

Review next Monday (class optional)

No class Wednesday: office hours for questions

NP problems

NP is the set of problems that can be verified in polynomial time

A problem can be verified in polynomial time if you can check that a given solution is correct in polynomial time
(NP is an abbreviation for non-deterministic polynomial time)

4

5

7

Reduction function

Given two problems P_{1} and P_{2} a reduction function, $f(x)$, is a function that transforms a problem instance x of type P_{1} to a problem instance of type P_{2}
such that: a solution to x exists for P_{1} iff a solution for $f(x)$ exists for P_{2}

6

Proving NP-completeness

Given a problem NEW to show it is NP-Complete

1. Show that NEW is in NP
a. Provide a verifier
b. Show that the verifier runs in polynomial time
2. Show that NEW is NP-Hard (i.e., all NP-complete problems are reducible to NEW in polynomial time)
a. Describe a reduction function f from a known NP-Complete problem to NEW
b. Show that f runs in polynomial time
c. Show that a solution exists to the NP-Complete problem IFF a solution exists to the NEW problem generate by f

8

Proving NP-completeness

Show that a solution exists to the NP-Complete problem IFF a solution exists to the NEW problem generate by f
\square Assume we have an NP-Complete problem instance that has a solution, show that the NEW problem instance generated by f has a solution
\qquad
\square Assume we have a problem instance of NEW generated by f that has a solution, show that we can derive a solution to the NP-Complete problem instance
\qquad yes

Other ways of proving the IFF, but this is often the easiest

9

NP-complete: SAT

Given a boolean formula of n boolean variables joined by m connectives (AND, OR or NOT) is there a setting of the variables such that the boolean formula evaluate to true?
$(a \wedge b) \vee(\neg a \wedge \neg b)$
$\left((\neg(b \vee \neg c) \wedge a) \vee\left(a^{\wedge} b^{\wedge} c\right)\right)^{\wedge} c^{\wedge} \neg b$

Is SAT an NP-complete problem?

NP-complete: 3-SAT

A boolean formula is in n-conjunctive normal form ($n-C N F$) if:

- it is expressed as an AND of clauses
\square where each clause is an OR of no more than n variables
$(a \vee \neg a \vee \neg b) \wedge(c \vee b \vee d) \wedge(\neg a \vee \neg c \vee \neg d)$

3-SAT: Given a 3-CNF boolean formula, is it satisfiable?
3-SAT is an NP-complete problem

10

NP-complete: SAT
Given a boolean formula of n boolean variables joined by m connectives (AND, OR or NOT) is there a setting of the variables such that the boolean formula evaluate to true? $\left((\neg(b \vee \neg c) \wedge a) \vee\left(a^{\wedge} b^{\wedge} c\right)\right)^{\wedge} c^{\wedge} \neg b$
Show that SAT is in NP a. Provide a verifier b. Show that the verifier runs in polynomial time 2. Show that NEW is NP-Hard (i.e., all NP-complete problems are reducible to NEW in polynomial time) a. Describe a reduction function f from a known NP-Complete problem to SAT b. Show that f runs in polynomial time c. Show that a solution exists to the NP-Complete problem IFF a solution exists to the SAT problem generate by f

12

NP-Complete: SAT

Show that SAT is in NP

Provide a verifier
Show that the verifier runs in polynomial time
Verifier: A solution consists of an assignment of the variables

- If clause is a single variable:
- return the value of the variable
- otherwise
- for each clause:
- call the verifier recursively
- compute a running solution
polynomial run-time?

13

NP-Complete: SAT

Show that all NP-complete problems are reducible to SAT in polynomial time
Describe a reduction function f from a known NP-Complete problem to SAT
Show that f runs in polynomial time
Show that a solution exists to the NP-Complete problem IFF a solution exists to the SAT problem generate by f
Reduce 3-SAT to SAT:

- Given an instance of 3-SAT, turn it into an instance of SAT

Reduction function:

- DONE ©
- Runs in constant time! (or linear if you have to copy the problem)

NP-Complete: SAT

Verifier: A solution consists of an assignment of the variables

- If clause is a single variable:
- return the value of the variable
- otherwise
- for each clause:
- call the verifier recursively linear time
- compute a running solution
- at most a linear number of recursive calls (each call makes the problem smaller and no overlap)
- overall polynomial time

14

NP-Complete: SAT

Show that a solution exists to the NP-Complete problem IFF a solution exists to the NEW problem generate by f

- Assume we have an NP-Complete problem instance that has a solution, show that the NEW problem instance generated by f has a solution
- Assume we have a problem instance of NEW generated by f that has a solution, show that we can derive a solution to the NP-Complete problem instance

Assume we have a 3-SAT problem with a solution:

- Because 3-SAT problems are a subset of SAT problems, then the SAT problem will also have a solution
Assume we have a problem instance generated by our reduction with a solution:
- Our reduction function simply does a copy, so it is already a 3-SAT problem
- Therefore the variable assignment found by our SAT-solver will also be a solution to the original 3-SAT problem

CLIQUE

A clique in an undirected graph $G=(V, E)$ is a subset V^{\prime} $\subseteq \mathrm{V}$ of vertices that are fully connected, i.e. every vertex in V^{\prime} is connected to every other vertex in V '

CLIQUE problem: Does G contain a clique of size k ?

Is there a clique of size 4 in this graph?

17

Is Half-Clique NP-Complete?

Show that NEW is in NP
Provide a verifier
Show that the verifier runs in polynomial time
2. Show that all NP-complete problems are reducible to NEW in polynomial time

Describe a reduction function f from a known NP-Complete problem to NEW
b. Show that f runs in polynomial time

Show that a solution exists to the NP-Complete problem IFF a solution exists to the NEW problem generate by f

Given a graph G, does the graph contain a clique containing exactly half the vertices?

HALF-CLIQUE

Show that HALF-CLIQUE is in NP
a. Provide a verifier
b. Show that the verifier runs in polynomial time

Verifier: A solution consists of the set of vertices in V^{\prime}

- check that $\left|V{ }^{\prime}\right|=|V| / 2$
- for all pairs of $u, v \in V^{\prime}$
- there exists an edge $(u, v) \in E$
- Check for edge existence in $O(V)$
- $\mathrm{O}\left(\mathrm{V}^{2}\right)$ checks
- $O\left(\mathrm{~V}^{3}\right)$ overall, which is polynomial

HALF-CLIQUE

21

HALF-CLIQUE
Reduce CLIQUE to HALF-CLIQUE: Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE It's already a half-clique problem $f(G, k)$
```if \(\lceil\|V

23

## HALF-CLIQUE



22

## HALF-CLIQUE

Reduce CLIQUE to HALF-CLIQUE:
Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE
We're looking for a clique that is smaller than half, so add an artificial clique to the graph and connect it up to all vertices

## $f(G, k)$

1 if $\lceil|V|\rceil / 2=k$
elseif $k<\lceil|V|] / 2$
$4 \quad$ return $G$ plus $(|V|-2 k)$ nodes which are fully connected and are connected to every node in $V$
else and are connected to every node in $V$
return $G$ plus $2 k-|V|$ nodes which have no edges

24


25

## Reduction proof

Show that a solution exists to the NP-Complete problem IFF a solution exists to the NEW problem generate by $f$

- Assume we have an NP-Complete problem instance that has a solution, show that the NEW problem instance generated by $f$ has a solution
yes ----------------------- yes
$\square$ Assume we have a problem instance of NEW generated by $f$ that has a solution, show that we can derive a solution to the NP-Complete problem instance
$\qquad$
$f(G, k)$
(if $||V| / 2=k$
elseif $k<[V \mid] \mid=$
return $G$ plus $(|V|-2 k)$ nodes which are fully connected and are connected to every node in $V$
else
return $G$ plus $2 k-|V|$ nodes which have no edges


## HALF-CLIQUE

Reduce CLIQUE to HALF-CLIQUE:
Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE
$f(G, k$
1 if $\lceil|V|\rceil / 2=k$

return $G$ plus $(|V|-2 k)$ nodes which are fully connected and are connected to every node in $V$
5 else
return $G$ plus $2 k-|V|$ nodes which have no edges

Runtime: From the construction we can see that it is polynomial time

26
Reduction proof

Given a graph $G$ that has a CLIQUE of size $k$, show
that $f(G, k)$ has a solution to HALF-CLIQUE
If $k=\|V\| / 2$ :
$\quad \square$ the graph is unmodified
$\square f(G, k)$ has a clique that is half the size

28

## Reduction proof

Given a graph $G$ that has a CLIQUE of size $k$, show that $f(G, k)$ has a solution to HALF-CLIQUE

If $k<|V| / 2$ :
$\square$ we added a clique of $|\mathrm{V}|-2 \mathrm{k}$ fully connected nodes
$\square$ there are $|V|+|V|-2 k=2(|V|-k)$ nodes in $f(G)$
$\square$ there is a clique in the original graph of size $k$
$\square$ plus our added clique of $|\mathrm{V}|-2 \mathrm{k}$
$\square k+|V|-2 k=|V|-k$, which is half the size of $f(G)$

## Reduction proof

Given a graph $f(G)$ that has a CLIQUE of half the elements, show that $G$ has a clique of size $k$

Key: $f(G)$ was constructed by your reduction function Use a similar argument to what we used in the other direction

## Concrete example

In class is slightly different than what you'd write

I've provided a concrete example of the Half-Clique proof on the course webpage

## Independent-Set

Given a graph $G=(V, E)$ is there a subset $V^{\prime} \subseteq V$ of vertices of size $\left|V{ }^{\prime}\right|=k$ that are independent, i.e. for any pair of vertices $u, v \in V^{\prime}$ there exists no edge between any of these vertices


Does the graph contain an independent set of size 5?
33

## CLIQUE revisited

A clique in an undirected graph $G=(V, E)$ is a subset $V^{\prime}$ $\subseteq \mathrm{V}$ of vertices that are fully connected, i.e. every vertex in $\mathrm{V}^{\prime}$ is connected to every other vertex in $\mathrm{V}^{\prime}$

CLIQUE problem: Does $G$ contain a clique of size $k$ ?


Is CLIQUE NP-Complete?

35

## Independent-Set

Given a graph $G=(V, E)$ is there a subset $V^{\prime} \subseteq V$ of vertices of size $\mid V$ ' $\mid=k$ that are independent, i.e. for any pair of vertices $u, v \in V^{\prime}$ there exists no edge between any of these vertices


Independent-Set is NP-Complete
34

## Is CLIQUE NP-Complete?

Show that CLIQUE is in NP Provide a verifier
Show that the verifier runs in polynomial time
2. Show that all NP-complete problems are reducible to CLIQUE in polynomial time
a. Describe a reduction function $f$ from a known NP-Complete problem to CLIQUE
b. Show that $f$ runs in polynomial time

Show that a solution exists to the NP-Complete problem IFF a solution exists to the CLIQUE problem generate by $f$

Given a graph G, does the graph contain a clique of size k?

36

## Independent-Set

Given a graph $G=(V, E)$ is there a subset $V^{\prime} \subseteq V$ of vertices of size $\left|V^{\prime}\right|=k$ that are independent, i.e. for any pair of vertices $u, v \in V^{\prime}$ there exists no edge between any of these vertices. Is there an independent set of size k ?


Reduce Independent-Set to CLIQUE
37

## Independent-Set to Clique

Given a graph $G=(V, E)$, the complement of that graph $G^{\prime}=(V$, $E$ ) is the a graph constructed by remove all edges $E$ and including all edges not in E

For example, for adjacency matrix this is flipping all of the bits
f(G)
return G'

## Independent-Set to Clique

Given a graph $G=(V, E)$ is there a subset $V^{\prime} \subseteq V$ of vertices of size $|V '|=k$ that are independent, i.e. for any pair of vertices $u, v \in V$ ' there exists no edge between any of these vertices

## Both are selecting vertices

Independent set wants vertices where NONE are connected

Clique wants vertices where ALL are connected

How can we convert a NONE problem to an ALL problem?

38

## Reduction proof

Show that a solution exists to the NP-Complete problem IFF a solution exists to the NEW problem generate by $f$

- Assume we have an Independent-Set problem instance that has a solution, show that the Clique problem instance generated by $f$ has a solution
$\qquad$
- Assume we have a problem instance of Clique generated by $f$ that has a solution, show that we can derive a solution to Independent-Set problem instance
$\qquad$
f(G)
return G'


41

## Independent-Set revisited

Given a graph $G=(V, E)$ is there a subset $V^{\prime} \subseteq V$ of vertices of size $\left|V{ }^{\prime}\right|=k$ that are independent, i.e. for any pair of vertices $u, v \in V^{\prime}$ there exists no edge between any of these vertices


Is Independent-Set NP-Complete?
43

## Proof

Given $f(G)$ that has clique of size $k$, show that $G$ has an independent set of size $k$
$\square$ By definition, the clique will have an edge between every vertex
$\square$ None of these vertices will therefore be connected in G, so we have an independent set

42

## Independent-Set revisited

Given a graph $G=(\mathrm{V}, \mathrm{E})$ is there a subset $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ of vertices of size $\mid V$ ' $\mid=k$ that are independent, i.e. for any pair of vertices $u, v \in V^{\prime}$ there exists no edge between any of these vertices


Reduce 3-SAT to Independent-Set
44

## 3-SAT to Independent-Set

Given a 3-CNF formula, convert it into a graph

$$
(a \vee \neg a \vee \neg b) \wedge(c \vee b \vee d) \wedge(\neg a \vee \neg c \vee \neg d)
$$

For the boolean formula in 3-SAT to be satisfied, at least one of the literals in each clause must be true

In addition, we must make sure that we enforce a literal and its complement must not both be true.

45

## 3-SAT to Independent-Set

Given a 3-CNF formula, convert into a graph

To enforce that only one variable and its complement can be set we connect each vertex representing $x$ to each vertex representing its complement $\sim x$


## 3-SAT to Independent-Set

Given a 3-CNF formula, convert into a graph

For each clause, e.g. (a $O R \sim b O R$ c) create a clique containing vertices representing these literals


- for the Independent-Set problem to be satisfied it can only select one variable
- to make sure that all clauses are satisfied, we set $k=$ number of clauses

46


48
Proof
Given a 3-SAT problem with k clauses and a valid truth
assignment, show that f(3-SAT) has an independent set of size k .
(Assume you know the solution to the 3-SAT problem and show
how to get the solution to the independent set problem)
Since each clause is an OR of variables, at least one of the three
must be true for the entire formula to be true. Therefore each 3-
clique in the graph will have at least one node that can be
selected

49

More NP-Complete problems

SUBSET-SUM:
$\square$ Given a set $S$ of positive integers, is there some subset $S^{\prime} \subseteq S$ whose elements sum to $t$.

TRAVELING-SALESMAN:

- Given a weighted graph $G$, does the graph contain a hamiltonian cycle of length k or less?

VERTEX-COVER:
$\square$ Given a graph $G=(V, E)$, is there a subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E$ then $u \in V^{\prime}$ or $v \in V^{\prime}$ ?

## Proof

Given a graph with an independent set $S$ of $k$ vertices, show there exists a truth assignment satisfying the boolean formula
$\square$ For any variable $x_{i}, S$ cannot contain both $x_{i}$ and $\neg x_{i}$ since they are connected by an edge
$\square$ For each vertex in $S$, we assign it a true value and all others false. Since $S$ has only $k$ vertices, it must have one vertex per clause

50

## Our known NP-Complete problems

We can reduce any of these problems to a new problem in an NP-completeness proof

SAT, 3-SAT
CLIQUE, HALF-CLIQUE
$\square$ INDEPENDENT-SET
$\square$ HAMILTONIAN-CYCLE
TRAVELING-SALESMAN
VERTEX-COVER
SUBSET-SUM

## Search vs. Exists

All the problems we've looked at asked decision questions:
Is there a hamiltonian cycle?
Does the graph have a clique of size k ?
Does the graph has an independent set of size k ?
...
For many of the problems with a k in them, we really want to
know what the largest/smallest one is
What is the largest clique in the graph?
What is the shortest path that visits all the vertices exactly once?
Why don't we care?

53


Solving NP-Complete problems
https://www.math.uwaterloo.ca/tsp/
https://www.math.uwaterloo.ca/tsp/world/

55

