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MAX FLOW
David Kauchak
CS 140 – Spring 2023
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Admin

Assignment 10

Checkpoint next Monday (sample problems coming 
soon)
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Student networking

You decide to create your own computer network:
¤ You get three of your friends and string some network cables
¤ Because of capacity (due to cable type, distance, computer, etc) you 

can only send a certain amount of data to each person
¤ If edges denote capacity, what is the maximum throughput you can 

you send from S to T?
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Student networking
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You decide to create your own campus network:
¤ You get three of your friends and string some network cables
¤ Because of capacity (due to cable type, distance, computer, etc) you 

can only send a certain amount of data to each person
¤ If edges denote capacity, what is the maximum throughput you can 

you send from S to T?
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Another flow problem
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How much water flow 
can we continually 
send from s to t?
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Another flow problem

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

14 units
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Flow graph/networks
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Flow network
¤ directed, weighted graph (V, E)

¤ positive edge weights indicating the “capacity” (generally, 
assume integers)

¤ contains a single source s Î V with no incoming edges

¤ contains a single sink/target t Î V with no outgoing edges
¤ every vertex is on a path from s to t
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Flow constraints

in-flow = out-flow for every vertex (except s, t)

flow along an edge cannot exceed the edge capacity

flows are positive
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Max flow problem

Given a flow network: what is the maximum flow we 
can send from s to t that meet the flow constraints?
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Applications?

network flow
¤ water, electricity, sewage, cellular…
¤ traffic/transportation capacity

bipartite matching

sports elimination

… 
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Max flow origins

Rail networks of the Soviet Union in the 1950’s
The US wanted to know how quickly the Soviet Union could get 
supplies through its rail network to its satellite states in Eastern 
Europe.
In addition, the US wanted to know which rails it could destroy most 
easily to cut off the satellite states from the rest of the Soviet Union.

These two problems are closely related: solving the max flow 
problem also solves the min cut problem of figuring out the 
cheapest way to cut off the Soviet Union from its satellites.

Source:  lbackstrom, The Importance of Algorithms, at www.topcoder.com
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Algorithm idea
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Algorithm idea
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send some flow down a path
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Algorithm idea
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send some flow down a path

Now what?
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Algorithm idea
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reroute some of the flow

Total flow?
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Algorithm idea
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Algorithm idea
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Algorithm idea
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send some flow down a path
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send some flow down a path
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Algorithm idea
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send some flow down a path
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Algorithm idea
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reroute some of the flow
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Algorithm idea
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Are we done?
Is this the best we can do?
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Cuts

A cut is a partitioning of the vertices into two sets Ss and 
St = V-Ss
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Flow across cuts
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In flow graphs, we’re interested in cuts that separate s from t, 
that is s Î Ss and t Î St
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Flow across cuts
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The flow “across” a cut is the total flow from nodes in Ss

to nodes in St minus the total from nodes in St to Ss

What is the flow across this cut?
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Flow across cuts
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10+10-6 = 14

The flow “across” a cut is the total flow from nodes in Ss

to nodes in St minus the total from nodes in St to Ss
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Flow across cuts
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Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink

What do we know about the flow across the any such cut?
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Flow across cuts

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

The flow across ANY such cut is the same and is the current 
flow in the network

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink
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Flow across cuts
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4+10 = 14

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink
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Flow across cuts
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4+6+4 = 14

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink
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Flow across cuts
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10+10-6 = 14

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink
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Flow across cuts
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The flow across ANY such cut is the same and is the current 
flow in the network

Why? Can you prove it?

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink
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Flow across cuts

The flow across ANY such cut is the same and is the current 
flow in the network

Inductively?

¨ every vertex is on a path from s to t
¨ in-flow = out-flow for every vertex (except s, t)

¨ flow along an edge cannot exceed the edge capacity

¨ flows are positive

35

Flow across cuts

The flow across ANY such cut is the same and is the current 
flow in the network

Base case: Ss = s

- Flow is total from from s to t: therefore the 
total flow out of s should be the flow

- All flow from s gets to t
- every vertex is on a path from s to t
- in-flow = out-flow
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Flow across cuts

The flow across ANY such cut is the same and is the current 
flow in the network

Inductive case: Consider moving a node x from St to Ss

Is the flow across the different partitions the same?

x

37

Flow across cuts

x

in-flow = out-flow

cut = left-inflow(x) – left-outflow(x) cut = right-outflow(x) – right-inflow(x)

left-inflow(x) + right-inflow(x) = left-outflow(x) + right-outflow(x)

left-inflow(x) - left-outflow(x) = right-outflow(x) – right-inflow(x)

Inductive case: Consider moving a node x from St to Ss
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Flow across cuts

The flow across ANY such cut is the same and is the current 
flow in the network

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink
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Capacity of a cut
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The “capacity of a cut” is the maximum flow that we could
send from nodes in Ss to nodes in St (i.e. across the cut)

How do we calculate the capacity?
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Capacity of a cut
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Capacity is the sum of the edges from Ss to St

10 + 9 = 19

The “capacity of a cut” is the maximum flow that we could
send from nodes in Ss to nodes in St (i.e. across the cut)
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Capacity of a cut
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Why?

The “capacity of a cut” is the maximum flow that we could
send from nodes in Ss to nodes in St (i.e. across the cut)

Capacity is the sum of the edges from Ss to St
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Capacity of a cut

- Any more and we would violate the edge capacity 
constraint

- Any less and it would not be maximal, since we 
could simply increase the flow

The “capacity of a cut” is the maximum flow that we could
send from nodes in Ss to nodes in St (i.e. across the cut)

Capacity is the sum of the edges from Ss to St
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Max Power

https://www.youtube.com/watch?v=BSVms6cT9nk
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Maximum flow
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Are we done?
Is this the best we can do?

For any cut where s Î Ss and t Î St
¤ the flow across the cut is the same

¤ the maximum capacity (i.e. flow) across the cut is the sum 
of the capacities for edges from Ss to St
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Maximum flow
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We can do no better than the minimum capacity cut! 

For any cut where s Î Ss and t Î St
¤ the flow across the cut is the same
¤ the maximum capacity (i.e. flow) across the cut is the sum 

of the capacities for edges from Ss to St

47
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Maximum flow
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What is the minimum capacity cut for this graph?

Capacity = 10 + 4

Is this the best we can do?
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Maximum flow
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What is the minimum capacity cut for this graph?

Capacity = 10 + 4

flow = minimum capacity, so we can do no better
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Algorithm idea
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send some flow down a path

How do we determine the 
path to send flow down?
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Algorithm idea
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send some flow down a path

Search for a path with 
remaining capacity from s to t
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Algorithm idea
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reroute some of the flow

How do we handle 
“rerouting” flow?
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Algorithm idea
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During the search, if an edge 
has some flow, we consider 
“reversing” some of that flow
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Algorithm idea
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During the search, if an edge 
has some flow, we consider 
“reversing” some of that flow

reroute some of the flow

54

The residual graph

The residual graph Gf is constructed from G

For each edge e in the original graph (G):
¤ if flow(e) < capacity(e)

n introduce an edge in Gf with capacity = capacity(e)-flow(e)
n this represents the remaining flow we can still push

¤ if flow(e) > 0
n introduce an edge in Gf in the opposite direction with 

capacity = flow(e)
n this represents the flow that we can reroute/reverse
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Algorithm idea
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s to t in Gf
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Algorithm idea

G
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57

Algorithm idea

G
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Find a path from
s to t in Gf
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Algorithm idea
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None exist… done!
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Algorithm idea
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Algorithm idea
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Find a path from
s to t in Gf
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Algorithm idea
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Algorithm idea

G
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Find a path from
s to t in Gf
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Algorithm idea

G
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Find a path from
s to t in Gf
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Algorithm idea

G

Gf

DONE!
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Ford-Fulkerson

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along the path as possible
Gf = residualGraph(G)

return flow

a simple path contains no 
repeated vertices

66

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along path as possible
Gf = residualGraph(G)

return flow

71
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Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along path as possible
Gf = residualGraph(G)

return flow

- traverse the graph
- at most add 2 edges 

for original edge
- θ(V + E)

Can we simplify this expression?
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Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along path as possible
Gf = residualGraph(G)

return flow

- traverse the graph
- at most add 2 edges 

for original edge
- θ(V + E) = θ(E)
- (all nodes exists on 

paths from s to t)
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Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along path as possible
Gf = residualGraph(G)

return flow

- BFS or DFS
- O(V + E) = O(E)
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Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along path as possible
Gf = residualGraph(G)

return flow

- max-flow!
- increases ever iteration
- integer capacities, so 

integer increases

Can we bound the number of 
times the loop will execute?
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Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along path as possible
Gf = residualGraph(G)

return flow

- max-flow!
- increases ever iteration
- integer capacities, so 

integer increases

Overall runtime? O(max-flow * E)

76

O(max-flow * E)

Can you construct a graph that could get this running time?
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O(max-flow * E)

Can you construct a graph that could get this running time?
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O(max-flow * E)

Can you construct a graph that could get this running time?
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O(max-flow * E)

Can you construct a graph that could get this running time?
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O(max-flow * E)

Can you construct a graph that could get this running time?
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O(max-flow * E)

Can you construct a graph that could get this running time?
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O(max-flow * E)

Can you construct a graph that could get this running time?
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O(max-flow * E)

Can you construct a graph that could get this running time?
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What is the problem here?  
Could we do better?

84

Faster variants

Edmunds-Karp
¤ Select the shortest path (in number of edges) from s to t in Gf

n How can we do this?
n use BFS for search

¤ Running time: O(V E2)
n avoids issues like the one we just saw
n see the book for the proof
n or 

http://www.cs.cornell.edu/courses/CS4820/2011sp/handouts/e
dmondskarp.pdf

preflow-push (aka push-relabel) algorithms
¤ O(V3)

85

Other variations…

http://en.wikipedia.org/wiki/Maximum_flow

http://akira.ruc.dk/~keld/teaching/algoritmedesign_
f03/Artikler/08/Goldberg88.pdf
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Network flow properties

If one of these is true then all are true (i.e. each 
implies the the others):

f is a maximum flow

Gf (residual graph) has no paths from s to t

|f| = minimum capacity cut
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Application: bipartite graph matching

Bipartite graph – a graph where every vertex can be partitioned into 
two sets X and Y such that all edges connect a vertex u Î X and a 
vertex v Î Y
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D

F

G
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Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at 
most once in M
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D

F

G
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Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at 
most once in M

A
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D
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matching
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Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at 
most once in M
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matching

92



4/12/23

22

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at 
most once in M

A
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G

not a 
matching
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Application: bipartite graph matching

A matching can be thought of as pairing the vertices
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Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite 
graph

A
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D

F

G

Where might this 
problem come up?

- CS department has n courses 
and m faculty

- Every instructor can teach 
some of the courses

- What course should each 
person teach?

- Anytime we want to match n 
things with m, but not all 
things can match

faculty

courses
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Application: bipartite graph matching

Setup as a flow problem:
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Application: bipartite graph matching

Setup as a flow problem:

A
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S T

edge weights?

98

Application: bipartite graph matching

Setup as a flow problem:

A
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S T

all edge weights are 1
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Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

S T

after we find the flow, how do we find the matching?
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Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

S T

match those nodes with flow between them
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Application: bipartite graph matching

Run-time?
Cost to build the flow?

¤ O(E)
n each existing edge gets a capacity of 1
n introduce V new edges (to and from s and t)
n V is O(E) (for non-degenerate bipartite matching problems)

Max-flow calculation?
¤ Basic Ford-Fulkerson: O(max-flow * E)
¤ Edmunds-Karp: O(V E2)

¤ Preflow-push: O(V3)

103

Application: bipartite graph matching

Run-time?
Cost to build the flow?

¤ O(E)
n each existing edge gets a capacity of 1
n introduce V new edges (to and from s and t)
n V is O(E) (for non-degenerate bipartite matching problems)

Max-flow calculation?
¤ Basic Ford-Fulkerson: O(max-flow * E)

n max-flow = O(V)
n O(V E)
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Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite 
graph

A

B

C

E

D

F

G

- CS department has n courses 
and m faculty

- Every instructor can teach some
of the courses

- What course should each person 
teach?

- Each faculty can teach at most 3 
courses a semester?

Change the s edge weights 
(representing faculty) to 3
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Application: bipartite graph matching

A

B

C

E

D

F

G

S T

3

3

3

3

Change the s edge weights 
(representing faculty) to 3

All others are capacity 1

faculty

courses
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Survey Design

Design a survey with the following requirements:
¤ Design survey asking n consumers about m products
¤ Can only survey consumer about a product if they own it
¤ Question consumers about at most q products
¤ Each product should be surveyed at most s times
¤ Maximize the number of surveys/questions asked

How can we do this?
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Survey Design

c1

c2

c3

p1

c4

p2

p3

S T

consumers products

each consumer can answer 
at most q questions

q

q

q

q

capacity 1 edge if 
consumer owned product each product can be 

questioned about at most 
s times

s

s

s
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Survey design

Is it correct?
¤ Each of the comments above the flow graph match the 

problem constraints
¤ max-flow finds the maximum matching, given the 

problem constraints

What is the run-time?
¤ Basic Ford-Fulkerson: O(max-flow * E)
¤ Edmunds-Karp: O(V E2)
¤ Preflow-push: O(V3)
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Two paths are edge-disjoint if they have no edge in 
common

s

2

3

4

Edge Disjoint Paths

5

6

7

t

110



4/12/23

26

Two paths are edge-disjoint if they have no edge in 
common

Edge Disjoint Paths

s

2

3

4

5

6

7

t
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Given a directed graph G = (V, E) and two nodes s and 
t, find the max number of edge-disjoint paths from s to t

s

2

3

4

Edge Disjoint Paths Problem

5

6

7

t

Why might this be useful?

112

Given a directed graph G = (V, E) and two nodes s and 
t, find the max number of edge-disjoint paths from s to t

Why might this be useful?
¤ edges are unique resources (e.g. communications, 

transportation, etc.)
¤ how many concurrent (non-conflicting) paths do we have 

from s to t

Edge Disjoint Paths Problem

113

Algorithm ideas?

Edge Disjoint Paths

s

2

3

4

5

6

7

t
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Max flow formulation:  assign unit capacity to every edge

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

What does the max flow represent?
Why?
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Max flow formulation:  assign unit capacity to every edge

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

- max-flow = maximum number of disjoint paths
- correctness:

- each edge can have at most flow = 1, so can 
only be traversed once

- therefore, each unit out of s represents a 
separate path to t
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Max-flow variations

What if we have multiple sources and multiple sinks 
(e.g. the Russian train problem has multiple sinks)?

S

S

T

S

T

T

capacity 
network
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Max-flow variations

Create a new source and sink and connect up with 
infinite capacities…

S

S

T

S

T

T

capacity 
networkS’ T’
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Max-flow variations

Vertex capacities: in addition to having edge 
capacities we can also restrict the amount of flow 
through each vertex

S

A

B

T

20

20
10

10

30

15

10

What is the max-flow now?
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Max-flow variations

Vertex capacities: in addition to having edge 
capacities we can also restrict the amount of flow 
through each vertex

S

A

B

T

10/20

10/20
10/10

10/10

30

10/15

10/10

20 units
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Max-flow variations

Vertex capacities: in addition to having edge 
capacities we can also restrict the amount of flow 
through each vertex

S

A

B

T

20

20
10

10

30

15

10

How can we solve this problem?
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Max-flow variations

For each vertex v
- create a new node v’

- create an edge with the vertex capacity from v to v’
- move all outgoing edges from v to v’

S

A’

B’

T

20

20
10

10

30

15

10

A

B
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Two paths are independent if they have no vertices in 
common

s

2

3

4

More problems:
maximum independent path

5

6

7

t
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Two paths are independent if they have no vertices in 
common

s

2

3

4

More problems:
maximum independent path

5

6

7

t
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Find the maximum number of independent paths

s

2

3

4

More problems:
maximum independent path

5

6

7

t

Ideas?
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Max flow formulation:  
- assign unit capacity to every edge (though any value would work)
- assign unit capacity to every vertex

maximum independent path

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

Same idea as the maximum edge-disjoint paths, 
but now we also constrain the vertices

1 1

1

1

1

1
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