

Admin

Assignment 10

Checkpoint next Monday (sample problems coming soon)

Flow across cuts

The flow across ANY such cut is the same and is the current flow in the network

Inductively?

- \Box every vertex is on a path from s to t
- $\hfill\square$ in-flow = out-flow for every vertex (except s, t)
- flow along an edge cannot exceed the edge capacity
- flows are positive

35

36

Flow across cuts

Consider any cut where $s\in S_s$ and $t\in S_{sr}$ i.e. the cut partitions the source from the sink

The flow across ANY such cut is the same and is the current flow in the network

Capacity of a cut

The "capacity of a cut" is the maximum flow that we could send from nodes in S_s to nodes in S_t (i.e. across the cut)

Capacity is the sum of the edges from S_{s} to S_{t}

- Any more and we would violate the edge capacity constraint
- Any less and it would not be maximal, since we could simply increase the flow

43

44

O(max-flow * E)

Hint:

Can you construct a graph that could get this running time?

Run-time?

Cost to build the flow?

□ O(E)

- each existing edge gets a capacity of 1
- introduce V new edges (to and from s and t)
- V is O(E) (for non-degenerate bipartite matching problems)

Max-flow calculation?

- Basic Ford-Fulkerson: O(max-flow * E)
- Edmunds-Karp: O(V E²)
- Preflow-push: O(V³)

103

Survey Design

Design a survey with the following requirements:

- Design survey asking *n* consumers about *m* products
- Can only survey consumer about a product if they own it
- Question consumers about at most q products
- Each product should be surveyed at most s times
- Maximize the number of surveys/questions asked

How can we do this?

107

108

