

1

Student networking

You decide to create your own computer network:

- You get three of your friends and string some network cables
- Because of capacity (due to cable type, distance, computer, etc) you can only send a certain amount of data to each person
- If edges denote capacity, what is the maximum throughput you can you send from S to T ?

3

Admin

Assignment 10

Checkpoint next Monday (sample problems coming soon)

Student networking

You decide to create your own campus network:

- You get three of your friends and string some network cables
- Because of capacity (due to cable type, distance, computer, etc) you can only send a certain amount of data to each person
- If edges denote capacity, what is the maximum throughput you can you send from S to T ?

30 units

5

Flow graph/networks

Flow network
\square directed, weighted graph (V, E)
\square positive edge weights indicating the "capacity" (generally, assume integers)
\square contains a single source $s \in V$ with no incoming edges
\square contains a single sink/target $t \in \mathrm{~V}$ with no outgoing edges \square every vertex is on a path from s to t

7
very vertex is on a path from sto

Another flow problem

14 units

Flow constraints
in-flow $=$ out-flow for every vertex (except s, t)
flow along an edge cannot exceed the edge capacity
flows are positive

9

Max flow problem

Given a flow network: what is the maximum flow we can send from s to t that meet the flow constraints?

Max flow origins

Rail networks of the Soviet Union in the 1950's
The US wanted to know how quickly the Soviet Union could get supplies through its rail network to its satellite states in Eastern Europe.

In addition, the US wanted to know which rails it could destroy most easily to cut off the satellite states from the rest of the Soviet Union

These two problems are closely related: solving the max flow problem also solves the min cut problem of figuring out the cheapest way to cut off the Soviet Union from its satellites.

Source: Ibackstrom, The Importance of Algorithms, at www.topcoder.com

Applications?

network flow

- water, electricity, sewage, cellular...
\square traffic/transportation capacity
bipartite matching
sports elimination
...

11

14

15

17

18

19

21

20

22

23

Cuts

A cut is a partitioning of the vertices into two sets S_{s} and $\mathrm{S}_{\mathrm{t}}=\mathrm{V}-\mathrm{S}_{\mathrm{s}}$

25

24

Flow across cuts

In flow graphs, we're interested in cuts that separate s from t, that is $s \in S_{s}$ and $t \in S_{t}$

26

Flow across cuts

The flow "across" a cut is the total flow from nodes in S_{s} to nodes in S_{t} minus the total from nodes in S_{t} to S_{s}

What is the flow across this cut?

27

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

What do we know about the flow across the any such cut?

29

Flow across cuts

The flow "across" a cut is the total flow from nodes in S_{s} to nodes in S_{t} minus the total from nodes in S_{t} to S_{s}

$$
10+10-6=14
$$

28

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

The flow across ANY such cut is the same and is the current flow in the network

30

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

$$
4+10=14
$$

31

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

$$
10+10-6=14
$$

33

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

$$
4+6+4=14
$$

32

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

The flow across ANY such cut is the same and is the current flow in the network
Why? Can you prove it?

34

Flow across cuts

The flow across ANY such cut is the same and is the current flow in the network

Inductively?

\square every vertex is on a path from s to t
\square in-flow = out-flow for every vertex (except s, t)
\square flow along an edge cannot exceed the edge capacity \square flows are positive

Flow across cuts

The flow across ANY such cut is the same and is the current flow in the network

Base case: $\mathrm{S}_{\mathrm{s}}=\mathrm{s}$

- Flow is total from from s to t: therefore the total flow out of should be the flow
- All flow from s gets to \dagger
- every vertex is on a path from s to \dagger
- in-flow = out-flow

36

Flow across cuts

Inductive case: Consider moving a node x from S_{t} to S_{s}
cut $=$ left-inflow $(x)-$ left-outflow $(x) \quad$ cut $=$ right-outflow $(x)-$ right-inflow (x)

left-inflow $(x)+$ right-inflow $(x)=$ left-outflow $(x)+$ right-outflow $(x) \quad$ in-flow $=$ out-flow
left-inflow(x) - left-oufflow $(x)=$ right-outflow $(x)-$ right-inflow (x)

38

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

The flow across ANY such cut is the same and is the current flow in the network

39

Capacity of a cut

The "capacity of a cut" is the maximum flow that we could send from nodes in S_{s} to nodes in S_{t} (i.e. across the cut)

Capacity is the sum of the edges from S_{s} to S_{t}

$$
10+9=19
$$

41

Capacity of a cut

The "capacity of a cut" is the maximum flow that we could send from nodes in S_{s} to nodes in S_{t} (i.e. across the cut)

> How do we calculate the capacity?

42

Capacity of a cut
The "capacity of a cut" is the maximum flow that we could
send from nodes in S_{s} to nodes in S_{t} (ie. across the cut)
Capacity is the sum of the edges from S_{s} to S_{t}
- Any more and we would violate the edge capacity
constraint
- Any less and it would not be maximal, since we
could simply increase the flow

43

46

Max Power

https://www.youtube.com/watch?v=BSVms6cT9nk

\square
44

48

50

49

51

52

54

53

55

56

58

57

59

60

61

62

63

64

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
flow $=0$ for all edges
a simple path contains no repeated vertices
$\mathrm{G}_{f}=$ residualGraph(G)
while a simple pathexists from s to \dagger in G_{f} send as much flow along the path as possible $\mathrm{G}_{\mathrm{f}}=$ residualGraph(G)
return flow

66

65

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow $=0$ for all edges
$\mathrm{G}_{\mathrm{f}}=$ residualGraph(G)
while a simple path exists from s to t in G_{f} send as much flow along path as possible $\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$
return flow

71

72

Ford-Fulkerson: runtime?

Ford-Fulkerson: runtime?	
Ford-Fulkerson($G, \mathrm{~s}, \mathrm{t}$) flow $=0$ for all edges $\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$ while a simple path exists from s to t in G_{f} send as much flow along path as possible $\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$ return flow	$\begin{aligned} & \text { - BFS or DFS } \\ & -\quad O(V+E)=O(E) \end{aligned}$

74

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow $=0$ for all edges
$\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$
while a simple path exists from sto tin G_{f}

- at most add 2 edges for original edge
send as much flow along path as possible $\theta(V+E)=\theta(E)$
$\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$
return flow
(all nodes exists on paths from s to t)

Ford-Fulkerson: runtime?

$\begin{aligned} & \text { Ford-Fulkerson(G, s, t) } \\ & \text { flow }=0 \text { for all edges } \end{aligned}$	
$\mathrm{G}_{f}=$ residual $\operatorname{Graph}(G)$ while a simple path exists from s to t in G_{f} send as much flow along path as possible $\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$ return flow	- max-flow! - increases ever iteration - integer capacities, so integer increases
Can we bound the number of times the loop will execute?	

75

76

O(max-flow * E)

Can you construct a graph that could get this running time?

78

O(max-flow * E)

Can you construct a graph that could get this running time?
Hint:

77

79

80

82

81

83

O(max-flow * E)

Can you construct a graph that could get this running time?

What is the problem here?
Could we do better?

84

86

Faster variants

Edmunds-Karp

\square Select the shortest path (in number of edges) from s to t in G_{f} - How can we do this?

- use BFS for search
\square Running time: $\mathrm{O}\left(\mathrm{VE}^{2}\right)$
- avoids issues like the one we just saw
- see the book for the proof
- or
http://www.cs.cornell.edu/courses/CS4820/2011sp/handouts/e dmondskarp.pdf
preflow-push (aka push-relabel) algorithms $\square \mathrm{O}\left(\mathrm{V}^{3}\right)$

85

Network flow properties

If one of these is true then all are true (i.e. each implies the the others):
f is a maximum flow
G_{f} (residual graph) has no paths from s to \dagger
$|\mathrm{f}|=$ minimum capacity cut

89

91

90

92

93

95

94

97

98

100

99

101

Application: bipartite graph matching
Run-time?
Cost to build the flow?
$\square O(E)$
\quad each existing edge gets a capacity of 1
\quad introduce V new edges (to and from s and t)
$\quad V$ is O(E) (for non-degenerate bipartite matching problems)
Max-flow calculation?
\square Basic Ford-Fulkerson: O(max-flow *E)
\square Edmunds-Karp: $O\left(V E^{2}\right)$
\square Preflow-push: $O\left(V^{3}\right)$

103

104

106

Survey Design
Design a survey with the following requirements:
ם Design survey asking n consumers about m products
\square Can only survey consumer about a product if they own it
\square Question consumers about at most q products
\square Each product should be surveyed at most s times
\square Maximize the number of surveys/questions asked
How can we do this?

107

Survey design

Is it correct?

- Each of the comments above the flow graph match the problem constraints
\square max-flow finds the maximum matching, given the problem constraints

What is the run-time?
\square Basic Ford-Fulkerson: O(max-flow *E)
\square Edmunds-Karp: O(V E²)

- Preflow-push: O(V ${ }^{3}$)

108

110

Edge Disjoint Paths

Two paths are edge-disjoint if they have no edge in common

111

Edge Disjoint Paths Problem

Given a directed graph $G=(V, E)$ and two nodes s and t, find the max number of edge-disioint paths from s to \dagger

Why might this be useful?
\square edges are unique resources (e.g. communications, transportation, etc.)
\square how many concurrent (non-conflicting) paths do we have from sto \dagger

Edge Disjoint Paths Problem

Given a directed graph $G=(V, E)$ and two nodes s and t, find the max number of edge-disjoint paths from s to \dagger

Why might this be useful?
112

114

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge

What does the max flow represent? Why?

115

Max-flow variations

What if we have multiple sources and multiple sinks (e.g. the Russian train problem has multiple sinks)?

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge

- max-flow = maximum number of disjoint paths
- correctness:
- each edge can have at most flow $=1$, so can only be traversed once
- therefore, each unit out of s represents a separate path to \dagger

116

118

119

Max-flow variations

Vertex capacities: in addition to having edge capacities we can also restrict the amount of flow through each vertex

How can we solve this problem?

Max-flow variations

Vertex capacities: in addition to having edge capacities we can also restrict the amount of flow through each vertex

120

122

126

More problems:
maximum independent path
Find the maximum number of independent paths
Ideas?

128

More problems:

maximum independent path
Two paths are independent if they have no vertices in common

127

129

