
4/12/23

1

MAX FLOW
David Kauchak
CS 140 – Spring 2023

1

Admin

Assignment 10

Checkpoint next Monday (sample problems coming
soon)

2

Student networking

You decide to create your own computer network:
¤ You get three of your friends and string some network cables
¤ Because of capacity (due to cable type, distance, computer, etc) you

can only send a certain amount of data to each person
¤ If edges denote capacity, what is the maximum throughput you can

you send from S to T?

S

A

B

T

20

2010

10

30

3

Student networking

S

A

B

T

20/20

20/2010/10

10/10

10/30 30 units

You decide to create your own campus network:
¤ You get three of your friends and string some network cables
¤ Because of capacity (due to cable type, distance, computer, etc) you

can only send a certain amount of data to each person
¤ If edges denote capacity, what is the maximum throughput you can

you send from S to T?

4

4/12/23

2

Another flow problem

S

A

B

T

10

910

4

2

C

D

6

10

10

8

How much water flow
can we continually
send from s to t?

5

Another flow problem

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

14 units

6

Flow graph/networks

S

A

B

T

20

20
10

10

30

Flow network
¤ directed, weighted graph (V, E)

¤ positive edge weights indicating the “capacity” (generally,
assume integers)

¤ contains a single source s Î V with no incoming edges

¤ contains a single sink/target t Î V with no outgoing edges
¤ every vertex is on a path from s to t

7

Flow constraints

in-flow = out-flow for every vertex (except s, t)

flow along an edge cannot exceed the edge capacity

flows are positive

S

A

B

T

20

20
10

10

30

9

4/12/23

3

Max flow problem

Given a flow network: what is the maximum flow we
can send from s to t that meet the flow constraints?

S

A

B

T

20

20
10

10

30

10

Applications?

network flow
¤ water, electricity, sewage, cellular…
¤ traffic/transportation capacity

bipartite matching

sports elimination

…

11

Max flow origins

Rail networks of the Soviet Union in the 1950’s
The US wanted to know how quickly the Soviet Union could get
supplies through its rail network to its satellite states in Eastern
Europe.
In addition, the US wanted to know which rails it could destroy most
easily to cut off the satellite states from the rest of the Soviet Union.

These two problems are closely related: solving the max flow
problem also solves the min cut problem of figuring out the
cheapest way to cut off the Soviet Union from its satellites.

Source: lbackstrom, The Importance of Algorithms, at www.topcoder.com

12

Algorithm idea

S

A

B

T

20

20
10

10

30

14

4/12/23

4

Algorithm idea

S

A

B

T

20/20

20/20
10

10

20/30

send some flow down a path

15

Algorithm idea

S

A

B

T

20/20

20/20
10/10

10

20/30

send some flow down a path

Now what?

16

Algorithm idea

S

A

B

T

20/20

20/20
10/10

10/10

10/30

reroute some of the flow

Total flow?

17

Algorithm idea

S

A

B

T

20/20

20/20
10/10

10/10

10/30

reroute some of the flow

30

18

4/12/23

5

Algorithm idea

S

A

B

T

10

910

4

2

C

D

6

10

10

8

19

Algorithm idea

S

A

B

T

8/10

910

4

2

C

D

6

10

8/10

8/8

send some flow down a path

20

Algorithm idea

S

A

B

T

10/10

910

2/4

2

C

D

6

2/10

8/10

8/8

send some flow down a path

21

Algorithm idea

S

A

B

T

10/10

2/92/10

2/4

2

C

D

6

2/10

10/10

8/8

send some flow down a path

22

4/12/23

6

Algorithm idea

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

reroute some of the flow

23

Algorithm idea

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

Are we done?
Is this the best we can do?

24

Cuts

A cut is a partitioning of the vertices into two sets Ss and
St = V-Ss

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

25

Flow across cuts

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

In flow graphs, we’re interested in cuts that separate s from t,
that is s Î Ss and t Î St

26

4/12/23

7

Flow across cuts

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

The flow “across” a cut is the total flow from nodes in Ss

to nodes in St minus the total from nodes in St to Ss

What is the flow across this cut?

27

Flow across cuts

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

10+10-6 = 14

The flow “across” a cut is the total flow from nodes in Ss

to nodes in St minus the total from nodes in St to Ss

28

Flow across cuts

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions
the source from the sink

What do we know about the flow across the any such cut?

29

Flow across cuts

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

The flow across ANY such cut is the same and is the current
flow in the network

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions
the source from the sink

30

4/12/23

8

Flow across cuts

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

4+10 = 14

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions
the source from the sink

31

Flow across cuts

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

4+6+4 = 14

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions
the source from the sink

32

Flow across cuts

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

10+10-6 = 14

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions
the source from the sink

33

Flow across cuts

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

The flow across ANY such cut is the same and is the current
flow in the network

Why? Can you prove it?

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions
the source from the sink

34

4/12/23

9

Flow across cuts

The flow across ANY such cut is the same and is the current
flow in the network

Inductively?

¨ every vertex is on a path from s to t
¨ in-flow = out-flow for every vertex (except s, t)

¨ flow along an edge cannot exceed the edge capacity

¨ flows are positive

35

Flow across cuts

The flow across ANY such cut is the same and is the current
flow in the network

Base case: Ss = s

- Flow is total from from s to t: therefore the
total flow out of s should be the flow

- All flow from s gets to t
- every vertex is on a path from s to t
- in-flow = out-flow

36

Flow across cuts

The flow across ANY such cut is the same and is the current
flow in the network

Inductive case: Consider moving a node x from St to Ss

Is the flow across the different partitions the same?

x

37

Flow across cuts

x

in-flow = out-flow

cut = left-inflow(x) – left-outflow(x) cut = right-outflow(x) – right-inflow(x)

left-inflow(x) + right-inflow(x) = left-outflow(x) + right-outflow(x)

left-inflow(x) - left-outflow(x) = right-outflow(x) – right-inflow(x)

Inductive case: Consider moving a node x from St to Ss

38

4/12/23

10

Flow across cuts

The flow across ANY such cut is the same and is the current
flow in the network

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions
the source from the sink

39

Capacity of a cut

S

A

B

T

10

910

4

2

C

D

6

10

10

8

The “capacity of a cut” is the maximum flow that we could
send from nodes in Ss to nodes in St (i.e. across the cut)

How do we calculate the capacity?

40

Capacity of a cut

S

A

B

T

10

910

4

2

C

D

6

10

10

8

Capacity is the sum of the edges from Ss to St

10 + 9 = 19

The “capacity of a cut” is the maximum flow that we could
send from nodes in Ss to nodes in St (i.e. across the cut)

41

Capacity of a cut

S

A

B

T

10

910

4

2

C

D

6

10

10

8

Why?

The “capacity of a cut” is the maximum flow that we could
send from nodes in Ss to nodes in St (i.e. across the cut)

Capacity is the sum of the edges from Ss to St

42

4/12/23

11

Capacity of a cut

- Any more and we would violate the edge capacity
constraint

- Any less and it would not be maximal, since we
could simply increase the flow

The “capacity of a cut” is the maximum flow that we could
send from nodes in Ss to nodes in St (i.e. across the cut)

Capacity is the sum of the edges from Ss to St

43

Max Power

https://www.youtube.com/watch?v=BSVms6cT9nk

44

Maximum flow

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

Are we done?
Is this the best we can do?

For any cut where s Î Ss and t Î St
¤ the flow across the cut is the same

¤ the maximum capacity (i.e. flow) across the cut is the sum
of the capacities for edges from Ss to St

46

Maximum flow

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

We can do no better than the minimum capacity cut!

For any cut where s Î Ss and t Î St
¤ the flow across the cut is the same
¤ the maximum capacity (i.e. flow) across the cut is the sum

of the capacities for edges from Ss to St

47

https://www.youtube.com/watch?v=BSVms6cT9nk

4/12/23

12

Maximum flow

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

What is the minimum capacity cut for this graph?

Capacity = 10 + 4

Is this the best we can do?

48

Maximum flow

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

What is the minimum capacity cut for this graph?

Capacity = 10 + 4

flow = minimum capacity, so we can do no better

49

Algorithm idea

S

A

B

T

8/10

910

4

2

C

D

6

10

8/10

8/8

send some flow down a path

How do we determine the
path to send flow down?

50

Algorithm idea

S

A

B

T

8/10

910

4

2

C

D

6

10

8/10

8/8

send some flow down a path

Search for a path with
remaining capacity from s to t

51

4/12/23

13

Algorithm idea

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

reroute some of the flow

How do we handle
“rerouting” flow?

52

Algorithm idea

S

A

B

T

10/10

2/92/10

2/4

2

C

D

6

2/10

10/10

8/8

During the search, if an edge
has some flow, we consider
“reversing” some of that flow

53

Algorithm idea

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

During the search, if an edge
has some flow, we consider
“reversing” some of that flow

reroute some of the flow

54

The residual graph

The residual graph Gf is constructed from G

For each edge e in the original graph (G):
¤ if flow(e) < capacity(e)

n introduce an edge in Gf with capacity = capacity(e)-flow(e)
n this represents the remaining flow we can still push

¤ if flow(e) > 0
n introduce an edge in Gf in the opposite direction with

capacity = flow(e)
n this represents the flow that we can reroute/reverse

55

4/12/23

14

Algorithm idea

S

A

B

T

20

20
10

10

30G

Gf

S

A

B

T

20

20
10

10

30 Find a path from
s to t in Gf

56

Algorithm idea

G

Gf

S

A

B

T

20/20

20/20
10

10

20/30

S

A

B

T

20

20
10

10

1020 Find a path from
s to t in Gf

57

Algorithm idea

G

Gf

S

A

B

T

20

20
10

10

2010

S

A

B

T

20/20

20/20
10/10

10/10

10/30

Find a path from
s to t in Gf

58

Algorithm idea

G

Gf

S

A

B

T

20

20
10

10

2010

S

A

B

T

20/20

20/20
10/10

10/10

10/30

None exist… done!

59

4/12/23

15

Algorithm idea

S

A

B

T

10

910

4

2

C

D

6

10

10

8

S

A

B

T

10

910

4

2

C

D

6

10

10

8

G

Gf

60

Algorithm idea

9

G

Gf

S

A

B

T

8/10

10

4

2

C

D

6

10

8/10

8/8

S

A

B

T

2

910

4

2

C

D

6

10

2

8

88

Find a path from
s to t in Gf

61

Algorithm idea

G

Gf

Find a path from
s to t in Gf

S

A

B

T

10/10

910

2/4

2

C

D

6

2/10

8/10

8/8

S

A

B

T

910

2

2

C

D

6

8

2

8

810

2
2

62

Algorithm idea

G

Gf

Find a path from
s to t in Gf

S

A

B

T

10/10

2/92/10

2/4

2

C

D

6

2/10

10/10

8/8

S

A

B

T

78

2

2

C

D

6

8
8

10
10

2
2

2 2

63

4/12/23

16

Algorithm idea

G

Gf

Find a path from
s to t in Gf

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

S

A

B

T

56

2

C

D

6

6
6

10
10

4

4

4 4

2

64

Algorithm idea

G

Gf

DONE!

S

A

B

T

10/10

4/94/10

4/4

2

C

D

6

4/10

10/10

6/8

S

A

B

T

56

2

C

D

6

6
6

10
10

4

4

4 4

2

65

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along the path as possible
Gf = residualGraph(G)

return flow

a simple path contains no
repeated vertices

66

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along path as possible
Gf = residualGraph(G)

return flow

71

4/12/23

17

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along path as possible
Gf = residualGraph(G)

return flow

- traverse the graph
- at most add 2 edges

for original edge
- θ(V + E)

Can we simplify this expression?

72

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along path as possible
Gf = residualGraph(G)

return flow

- traverse the graph
- at most add 2 edges

for original edge
- θ(V + E) = θ(E)
- (all nodes exists on

paths from s to t)

73

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along path as possible
Gf = residualGraph(G)

return flow

- BFS or DFS
- O(V + E) = O(E)

74

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along path as possible
Gf = residualGraph(G)

return flow

- max-flow!
- increases ever iteration
- integer capacities, so

integer increases

Can we bound the number of
times the loop will execute?

75

4/12/23

18

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
Gf = residualGraph(G)
while a simple path exists from s to t in Gf

send as much flow along path as possible
Gf = residualGraph(G)

return flow

- max-flow!
- increases ever iteration
- integer capacities, so

integer increases

Overall runtime? O(max-flow * E)

76

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

100

100100

100

Hint:

77

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

100

100100

100

1

78

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

1/100

1/100100

100

1/1

79

4/12/23

19

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

1/100

1/1001/100

1/100

0/1

80

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

2/100

2/1001/100

1/100

1/1

81

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

2/100

2/1002/100

2/100

0/1

82

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

3/100

3/1002/100

2/100

1/1

83

4/12/23

20

O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

3/100

3/1003/100

3/100

0/1

What is the problem here?
Could we do better?

84

Faster variants

Edmunds-Karp
¤ Select the shortest path (in number of edges) from s to t in Gf

n How can we do this?
n use BFS for search

¤ Running time: O(V E2)
n avoids issues like the one we just saw
n see the book for the proof
n or

http://www.cs.cornell.edu/courses/CS4820/2011sp/handouts/e
dmondskarp.pdf

preflow-push (aka push-relabel) algorithms
¤ O(V3)

85

Other variations…

http://en.wikipedia.org/wiki/Maximum_flow

http://akira.ruc.dk/~keld/teaching/algoritmedesign_
f03/Artikler/08/Goldberg88.pdf

86

Network flow properties

If one of these is true then all are true (i.e. each
implies the the others):

f is a maximum flow

Gf (residual graph) has no paths from s to t

|f| = minimum capacity cut

87

4/12/23

21

Application: bipartite graph matching

Bipartite graph – a graph where every vertex can be partitioned into
two sets X and Y such that all edges connect a vertex u Î X and a
vertex v Î Y

A

B

C

E

D

F

G

89

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at
most once in M

A

B

C

E

D

F

G

90

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at
most once in M

A

B

C

E

D

F

G

matching

91

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at
most once in M

A

B

C

E

D

F

G

matching

92

4/12/23

22

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at
most once in M

A

B

C

E

D

F

G

not a
matching

93

Application: bipartite graph matching

A matching can be thought of as pairing the vertices

A

B

C

E

D

F

G

94

Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite
graph

A

B

C

E

D

F

G

Where might this
problem come up?

- CS department has n courses
and m faculty

- Every instructor can teach
some of the courses

- What course should each
person teach?

- Anytime we want to match n
things with m, but not all
things can match

faculty

courses

95

Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

97

4/12/23

23

Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

S T

edge weights?

98

Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

S T

all edge weights are 1

99

Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

S T

after we find the flow, how do we find the matching?

100

Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

S T

match those nodes with flow between them

101

4/12/23

24

Application: bipartite graph matching

Run-time?
Cost to build the flow?

¤ O(E)
n each existing edge gets a capacity of 1
n introduce V new edges (to and from s and t)
n V is O(E) (for non-degenerate bipartite matching problems)

Max-flow calculation?
¤ Basic Ford-Fulkerson: O(max-flow * E)
¤ Edmunds-Karp: O(V E2)

¤ Preflow-push: O(V3)

103

Application: bipartite graph matching

Run-time?
Cost to build the flow?

¤ O(E)
n each existing edge gets a capacity of 1
n introduce V new edges (to and from s and t)
n V is O(E) (for non-degenerate bipartite matching problems)

Max-flow calculation?
¤ Basic Ford-Fulkerson: O(max-flow * E)

n max-flow = O(V)
n O(V E)

104

Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite
graph

A

B

C

E

D

F

G

- CS department has n courses
and m faculty

- Every instructor can teach some
of the courses

- What course should each person
teach?

- Each faculty can teach at most 3
courses a semester?

Change the s edge weights
(representing faculty) to 3

105

Application: bipartite graph matching

A

B

C

E

D

F

G

S T

3

3

3

3

Change the s edge weights
(representing faculty) to 3

All others are capacity 1

faculty

courses

106

4/12/23

25

Survey Design

Design a survey with the following requirements:
¤ Design survey asking n consumers about m products
¤ Can only survey consumer about a product if they own it
¤ Question consumers about at most q products
¤ Each product should be surveyed at most s times
¤ Maximize the number of surveys/questions asked

How can we do this?

107

Survey Design

c1

c2

c3

p1

c4

p2

p3

S T

consumers products

each consumer can answer
at most q questions

q

q

q

q

capacity 1 edge if
consumer owned product each product can be

questioned about at most
s times

s

s

s

108

Survey design

Is it correct?
¤ Each of the comments above the flow graph match the

problem constraints
¤ max-flow finds the maximum matching, given the

problem constraints

What is the run-time?
¤ Basic Ford-Fulkerson: O(max-flow * E)
¤ Edmunds-Karp: O(V E2)
¤ Preflow-push: O(V3)

109

Two paths are edge-disjoint if they have no edge in
common

s

2

3

4

Edge Disjoint Paths

5

6

7

t

110

4/12/23

26

Two paths are edge-disjoint if they have no edge in
common

Edge Disjoint Paths

s

2

3

4

5

6

7

t

111

Given a directed graph G = (V, E) and two nodes s and
t, find the max number of edge-disjoint paths from s to t

s

2

3

4

Edge Disjoint Paths Problem

5

6

7

t

Why might this be useful?

112

Given a directed graph G = (V, E) and two nodes s and
t, find the max number of edge-disjoint paths from s to t

Why might this be useful?
¤ edges are unique resources (e.g. communications,

transportation, etc.)
¤ how many concurrent (non-conflicting) paths do we have

from s to t

Edge Disjoint Paths Problem

113

Algorithm ideas?

Edge Disjoint Paths

s

2

3

4

5

6

7

t

114

4/12/23

27

Max flow formulation: assign unit capacity to every edge

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

What does the max flow represent?
Why?

115

Max flow formulation: assign unit capacity to every edge

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

- max-flow = maximum number of disjoint paths
- correctness:

- each edge can have at most flow = 1, so can
only be traversed once

- therefore, each unit out of s represents a
separate path to t

116

Max-flow variations

What if we have multiple sources and multiple sinks
(e.g. the Russian train problem has multiple sinks)?

S

S

T

S

T

T

capacity
network

117

Max-flow variations

Create a new source and sink and connect up with
infinite capacities…

S

S

T

S

T

T

capacity
networkS’ T’

118

4/12/23

28

Max-flow variations

Vertex capacities: in addition to having edge
capacities we can also restrict the amount of flow
through each vertex

S

A

B

T

20

20
10

10

30

15

10

What is the max-flow now?

119

Max-flow variations

Vertex capacities: in addition to having edge
capacities we can also restrict the amount of flow
through each vertex

S

A

B

T

10/20

10/20
10/10

10/10

30

10/15

10/10

20 units

120

Max-flow variations

Vertex capacities: in addition to having edge
capacities we can also restrict the amount of flow
through each vertex

S

A

B

T

20

20
10

10

30

15

10

How can we solve this problem?

121

Max-flow variations

For each vertex v
- create a new node v’

- create an edge with the vertex capacity from v to v’
- move all outgoing edges from v to v’

S

A’

B’

T

20

20
10

10

30

15

10

A

B

122

4/12/23

29

Two paths are independent if they have no vertices in
common

s

2

3

4

More problems:
maximum independent path

5

6

7

t

126

Two paths are independent if they have no vertices in
common

s

2

3

4

More problems:
maximum independent path

5

6

7

t

127

Find the maximum number of independent paths

s

2

3

4

More problems:
maximum independent path

5

6

7

t

Ideas?

128

Max flow formulation:
- assign unit capacity to every edge (though any value would work)
- assign unit capacity to every vertex

maximum independent path

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

Same idea as the maximum edge-disjoint paths,
but now we also constrain the vertices

1 1

1

1

1

1

129

