SHORTEST PATHS

David Kauchak
CS 140 — Spring 2023

4/10/23

Admin

[
Assignment 9

Assignment 10 (2 weeks assignment) — don't ignore
until next week

Checkpoint 2 next Monday

Checkpoint 2

[N
2 pages of notes

2/20 through 4/10 (will not include network flow)

Will make some practice problems available later this
week

Checkpoint 2 topics

[N
greedy algorithms

- proving correctness

- developing algorithms

- comparing vs. dynamic programming

hashtables

- collision resolution by chaining
- open addressing

- hash functions

Dynamic programming

4/10/23

Checkpoint 2 topics
fr

graphs
different types of graphs
terminology

representing graphs (adjacency list/matrix)

graph algorithms
Traversal: BFS, DFS
MST: Prim’s, Kruskal's
Topological sort
Connectedness
Detecting cycles
Single-source shortest paths: Dijskra’s, Bellman-Ford
All-pairs shortest paths: Floyd-Warshal, Johnson's

Run-time, why the work, when you can apply them

graph misc

min-cut property (proving correctness of MST algorithms)

All pairs shortest paths
[

All pairs shortest paths: calculate the shortest paths
between all vertices

5 6
All pairs shortest paths All pairs shortest paths
[==
All pairs shortest paths: calculate the shortest paths All pairs shortest paths: calculate the shortest paths
between all vertices between all vertices
. Run Bellman-Ford from each vertex!
Easy solution?
O(V2E)
¢ Bellman-Ford: O(VE)
* V calls, one for each vertex
7 8

4/10/23

Floyd-Warshall: key idea

Label all vertices with a number from 1 to V

dl-jk = shortest path from vertex [to vertex j

using only vertices {1,2, ..., k}

Floyd-Warshall: key idea

dij* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

What is d532

9 10
Floyd-Warshall: key idea Floyd-Warshall: key idea
| |
d,/‘ = shortest path from vertex [to vertex j
using only vertices {1,2, ..., k} Label all vertices with a number from 1 to V
dl-jk = shortest path from vertex i to vertex j
using only vertices {1, 2, ..., k}
If we want all possibilities, how many values are there
(i.e. what is the size of d;¥)2
di53 = 1. Can't use vertex 4.
11 12

4/10/23

Floyd-Warshall: key idea

Label all vertices with a number from 1 to V

dl-j/" = shortest path from vertex i to vertex j

using only vertices {1,2, ..., k}

V3

i: all vertices
J: all vertices

k: all vertices

13

Floyd-Warshall: key idea
[

Label all vertices with a number from 1 to V

d
using only vertices {1,2, ..., k}

What is d;;"2

* Distance of the shortest path from i to j

Uk = shortest path from vertex [to vertex j

If we can calculate this, for all (i,)), we're done!

14

15

Recursive relationship

dt/'/(-

shortest path from vertex [to vertex j
using only vertices {1,2, ..., k}

Assume we know di,"

How can we calculate d[/-k'*'l, i.e. shortest path now

including vertex k+12 (Hint: in terms of d,/'/‘)

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

Recursive relationship
[

d,/‘ = shortest path from vertex i to vertex j

using only vertices {1, 2, ..., k}

Two options:
1) Vertex k+1 doesn't give us a shorter path
2) Vertex k+1 does give us a shorter path

di/‘k+1 =2

16

4/10/23

Recursive relationship

dij* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

di/‘k+1 — dijk

Recursive relationship

dij* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

di/‘k+1 =2

17

18

Recursive relationship

d,/‘ = shortest path from vertex [to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

di/‘k+1 =2

some vertices {1...k} some vertices {1...k}

What is the cost of this path?

Recursive relationship

d,/‘ = shortest path from vertex i to vertex j
using only vertices {1, 2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

di* ™t = digen) + dgern;©

some vertices {1...k} some vertices {1...k}

iger1)* + ey

19

20

4/10/23

Recursive relationship
fr

dif* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

di/‘k+l =2

How do we combine these two options?

Recursive relationship
[

d;f* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

di** = min(dijk, digesny + dgesn);)

Pick whichever is shorter

21

22

Floyd-Warshall
fr

Calculate dj* for increasing k, i.e. k = 1to V

Floyd-Warshall(G = (V,E,W)):

L=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(dyc1, dy "+ dy Y

Floyd-Warshall(G = (V,E,W)): return dV
d°=w // initialize with edge weights k=0 k=1
fork=1toV T2 3 4 5 12 3 4 s
fori=11oV 110 4 -1 © o 110 4 -1 o o
ert= ° 2] o Q0 o o 5 2]l 0 0 o o 5§
forj=1toV 3l 3 0 2 2 3l 3 0 2 2
k-1 - - —
dijk = min(dy* 1, dy +di 4| @ @ © 0 -3 sl o © ® 0 3
5 o 1 oo 0 5 © o 1 © 0
return d” adjacency matrix no change
23 24

4/10/23

Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(di*1, dy "+ die

Floyd-Warshall(G = (V,E,W)):

do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(dg* 1, dg " + dy

dijk = min(di*2, dy " + die)

return d”
k=2

1 2 3 4 5
0 4 -1 » 9 |
o () o© o 5 2
® 3 0 2 2 3
© o o 0 -3 4
© o | o 0 5

dijk = min(di*?, dy T + di)

return d" return d”
k=1 =2 k=1 k=2
1 2 3 4 5 2 3 4 5 12 3 4 5 1 2 3 4 5

0 4 -1 o o 1 4 -1 o (2 110 4 -1 o (o 1 0 4 -1 » (9

o () o o 5 2 2 o () o o (5 2

o 3 0 2 2 3 3o 3 0 2 2 3

o oo o (0 =3 4 4 0 o o (0 =3 4

© oo | o 0 5 5] o o0] o 0 5

minimum
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights L=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV

return d”
k=2 k=3
1 2 3 4 5 1 2 3 4 5

110 4) &1 o 9 1 0 2
2|l 0o O o ow 5 2
3] o (3, 0 2 2 3
4|0 0 x 0 -3 4
5[0 0 1 o 0 5

minimum Found a shorter path!

27

28

4/10/23

Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(di*1, dy "+ die

Floyd-Warshall(G = (V,E,W)):

do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(dg* 1, dg " + dy

dijk = min(di*2, dy " + die)

return d”
k=2 =3
1 2 3 4 5 1 2 3
0 4 <1 » 9 o o2 -
o () o o 5 2
o 3 0 (2 2 3
o oo oo (0 =3 4
o oo] o 0 5
minimum

dijk = min(di*?, dy T + di)

return d" return d”
k=2 =3 k=2 =3
1 2 3 4 5 1 2 3 12 3 4 5 1 2 3 4
0 4 -1 o 9 1 0 2 0 4 -1 o 9 1 0 2 -1°2
o () o o 5 2 o () o o 5 2
o 3 0 2 2 3 o 3 0 2 2 3
o oo o (0 =3 4 w oo o (O =3 4
© oo | o 0 5 o oo 1 o 0 5
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights L=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV

return d”
k=2 =3
1 2 3 4 5 1 2 3 4
0 4 -1 o 9 1 02 -11
o () o o 5 2
o 3 0 2 2 3
o o o 0 -3 4
o oo 1 o 0 5

31

32

4/10/23

Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(di*1, dy "+ die dijk = min(di*1, dy T + di;)
return d" return d”
k=2 =3 k=2 =3
1 2 3 4 5 1 2 3 4 5 12 3 4 5 1 2 3
110 4 -1 o 9 T 10 2 -1 142 110 4 &1 o (9 0 2 -1
2| o 0 o o 5 2 2| o 0 o ow 5 2
3w 3 0 2 2 3 3o 3 0 2 (2 3
4 0 0 o 0 -3 4 4 0 0 o 0 -3 4
5/ 00 o0 1 o 0 5 500 0 1 o 0 5
minimum Found a shorter path!
33 34

Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(di*2, dy " + die)

Floyd-Warshall(G = (V,E,W)):

=W // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(di*?, dy T + di)

return d” return d”
k=2 =3 k=3 k=4
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3
110 4 -1 o 9 0 2 -1 1 1 1 0 2 -1 1 1 1 0 2 -1
2 0o) o o 5 2 o 0 o o 5 2 ©o O o o 5 2
3w 3 0 2 2 3]l 3 0 2 2 3 v 3 0 2 2 3
4| 0o 0o o (O =3 4 o oo oo (O =3 4 o oo ow (O =3 4
5/ 00 o0 1 o 0 5 o oo] o 0 5 o o 1 o 0 5
35 36

4/10/23

Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(di*1, dy "+ die dijk = min(di*1, dy T + di;)
return d" return d”
k=3 k=4 k=3 k=4
1 2 3 4 5 1 2 3 4 5 12 3 4 5 1 2 3 4 5
1|10 2 -1(1) 1 10 2 -1 1 £2 1|10 2 -1 1 1 110 2 -1 1 -2
2 ©o) o o 5 2 2 o () o o 5 2
3 o 3 0 2 2 3 3 o 3 0 2 2 3
4 | 0 o o 0 £3 4 4 | 0 o o 0 -3 4
5 o oo] o 0 5 5 o oo | o 0 5
minimum Found a shorter path!
37 38
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights L=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(di*2, dy " + die) dijk = min(dy*1, dy "t + di)
return d” return d”
k=3 k=4 k=3 k=4
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
|10 2 -1 1 1 |10 2 -1 1 =2 1|10 2 -1 1 1 1|10 2 -1 1 =2
2 o () o o 5 2 o () o o 5 2 ©o O o o 5 2 o () o o 5
3 o 3 0 2 2 3 o 3 0 2 @ 3 o 3 0 (2 2 3 o 3 0 2 =1
4 o oo oo (0 =3 4 4 o oo o (O =3 4
5 © o | o 0 5 5 o o 1 o 0 5
minimum Found a shorter path!
39 40

10

4/10/23

Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(di*1, dy "+ die dijk = min(di*1, dy T + di;)
return d” return d”
k=3 k=4 k=4 k=5
1 2 3 4 5 1 2 3 4 5 12 3 4 5 1 2 3 4 5
|10 2 -1 1 1 10 2 -1 1 =2 110 2 -1 1 =2 110 2 -1 1 =2
2 ©o) o o 5 2 o () oo o« 5 2 o () o o 5 2 o 0 (7 (9 5
3 o 3 0 2 2 3o 3 0 2 -1 3] o 3 0 2 -1 3| 3 0 2 -1
4 | ©® © o (0 =3 4| © © o (O =3 4| 0 o0 o (0 -3 4 |0l =2 0 -3
5 o oo | o 0 5 0 1 oo 0 5 o oo] o 0 5 o 0o 1 oo 0
Done!
41 42
Floyd-Warshall analysis Floyd-Warshall analysis
[|
Is it correct? Is it correct?
Any assumptions?
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do°=w // initialize with edge weights do=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(dy*, dy " + i Y dijk = min(dy*%, dy " + iy)
return d” return d”
43 44

11

4/10/23

Floyd-Warshall analysis
fr

Is it correct?
Assuming the graph has no negative cycles!

What happens if there is a negative cycle?
Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(de*1, dy T + di Y

return d

Floyd-Warshall analysis

If the graph has a negative weight cycle, at the end, at

least one of the diagonal entries will be a negative
number, i.e., we there’s a way to get back to a vertex

using all of the vertices that results in a negative weight

1 2 3 4 5
1 02 -1 1 =2
2 o0 7 9 5
3 o 3 (0 2 -1
4 o 1 =20 -3
5 © o] o (0

45 46
Floyd-Warshall analysis Floyd-Warshall analysis
[|
Run-time? Run-time: B(V?)
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,EW)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(di*=, dy " + di 7Y dijk = min(di*%, dy.* 7t + di ;<)
return d” return d”
47 48

12

4/10/23

Floyd-Warshall analysis

What type of algorithm is Floyd-Warshall?

Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(d*~1, dy "+ di K

return d

Floyd-Warshall analysis
[

Dynamic programming!!
Build up solutions to larger problems using solutions to
smaller problems. Use a table to store the values.

Floyd-Warshall(G = (VE,W)):
do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(di*~1, dy ! + di)

return d”

49 50
Floyd-Warshall analysis Floyd-Warshall: key idea
|] |
Space usage? Label all vertices with a number from 1 to V
dij/‘ = shortest path from vertex i to vertex j
Floyd-Warshall(G = (V;EW)): using only vertices {1,2, ..., k}
do°=w // initialize with edge weights
fork=1toV
fori=1toV ol e
forj=1toV If we want all possibilities, how many values are there
dijk = min(dy 1, i~ + di*) (i.e. what is the size of d;¥)2
return d”
51 52

13

4/10/23

Floyd-Warshall: key idea Floyd-Warshall analysis
[==
Label all vertices with a number from 1 to V Space usage: B(V?)
. . Only need the current value and the previous
di]-k = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k} Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork=1toV
V3 fori=1toV
e i: all vertices Can we do better? for/ =11V e
* j:all vertices) dijk = min(dg*~, dy " + dj 1)
e k: all vertices
return d”
53 54
All pairs shortest paths All pairs shortest paths
[==
V * Bellman-Ford: O(V 2E)
All pairs shortest paths for positive weight graphs:
calculate the shortest paths between all points
Floyd-Warshall: B(V3)
Easy solution?
55 56

14

4/10/23

All pairs shortest paths
fr

calculate the shortest paths between all points

Run Dijsktras from each vertex!

Running time (in terms of E and V)?

All pairs shortest paths for positive weight graphs:

All pairs shortest paths
[

calculate the shortest paths between all points

Run Dijsktras from each vertex!

O(V%log V + VE)
¢V calls to Dijkstras
* Dijkstras: O(V log V + E)

All pairs shortest paths for positive weight graphs:

57

58

All pairs shortest paths
fr

V * Bellman-Ford: O(V2E)

Floyd-Warshall: B(V3)

V * Dijkstras: O(V2 log V + V E)

Is this any better?

All pairs shortest paths

V * Bellman-Ford: O(V2E)
Floyd-Warshall: B(V3)

V * Dijkstras: O(V2 log V + V E)

If the graph is sparse!

59

60

15

4/10/23

All pairs shortest paths

All pairs shortest paths for positive weight graphs:
calculate the shortest paths between all points

Run Dijsktras from each vertex!

Challenge: Dijkstras assumes positive weights

Johnson’s: key idea
=

Reweight the graph to make all edges positive such
that shortest paths are preserved

What's the shortest path from A to D2

61

62

Lemma

let h be any function mapping a vertex to a real value

If we change the graph weights as:
w(u,v) =w(u,v)+h(u)-h(v)

The shortest paths are preserved

Lemma: proof Wv)=w(,v)+hu)=h(v)
[

Lets, vi, v, ..., vi, t be a path from s to t

The weight in the reweighted graph is:

WS, VyreresVst) = WS, +(8) = BV 4 W1V, 1)
=W, + ()= (0 # Wy,)+ () = () + By V)
= W8, + h(8)+ WV, ;) = h(V,) + (V.o Vp 1)
=W, 4 h(S)+ WV,) = (0,) E Wy, v3) B0) = B(vy) 4 W(Vs,..os v E)

=w(s,v,)+h(s)+ Wy, v,) + w(v,,v,) = h(vy) + W(Vs,..., v, 1)

=W(S, Vs Vi, 1) + h(s) - h(t)

63

64

16

4/10/23

Lemma: proof
=

WS, Vyseens Vi) = WS,V ees Vo 1) + A(S) = B(E)

Claim: the weight change preserves shortest paths, i.e. if a path was the

shortest from s to t in the original graph it will still be the shortest path
from s to t in the new graph.

Justification?

Lemma: proof
o

WS, Vyseees Vi 1) = WS, Ve Vo 1) + H(8) = h(1)

Claim: the weight change preserves shortest paths, i.e. if a path was the

shortest from s to t in the original graph it will still be the shortest path
from s to t in the new graph.

h(s) = h(t) is a constant and will be the same for all
paths from s to 1, so the absolute ordering of all paths
from s to t will not change.

65

66

Lemma
[

let h be any function mapping a vertex to a real value

If we change the graph weights as:
w(u,v) =w(u,v)+h(u)-h(v)

The shortest paths are preserved

Big question: how do we pick h2

Selecting h
[

Need to pick h such that the resulting graph has
weights as positive

w(u,v) = w(u,v)+h(u) - h(v)

67

68

17

4/10/23

Johnson’s algorithm
fr

Create G’ with one extra node s with O weight edges to all nodes

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

Create G’
run Bellman-Ford(G’,s)
if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

69

70

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

SDA:2
S=>B:
S>C:
S=>D:
S=>E:

Create G’

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

SA:0
S=>B:
S>C:
S=>D:
S=>E:

71

72

18

4/10/23

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

SDA:0
S>B: 2
S2C:
S=D:
SDE:

Create G

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

SDA:0
S=>B: -2
SC:
S=D:
SE:

73

74

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

S=DA:0
S=>»B: -2
S=2C: 0
S=D: 0
S=>E: -3

SDA:0
S=»B: -2
S=2C: 0
S=D: 0
S=E: -3

75

76

19

4/10/23

Create G’

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)

h(v) in blue

Create G
run Bellman-Ford(G’,s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)
ad +0 - -2

h(v) in blue

77

78

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)

h(v) in blue

Create G’
run Bellman-Ford(G’,s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)
2 +2 -0

[

h(v) in blue

79

80

20

4/10/23

Create G’

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)

h(v) in blue

Create G
run Bellman-Ford(G’,s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)
4 +0 -0
-2 °

h(v) in blue

81

82

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)

2 °

h(v) in blue

Create G’
run Bellman-Ford(G’,s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)
5 +0 - -3

'

h(v) in blue

83

84

21

4/10/23

Create G’

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)

h(v) in blue

Create G

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

85

86

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

Create G’

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

87

88

22

4/10/23

A=DB: -1
A=DC: 2

AD: 1
ADE: -2

Selecting h
[

Need to pick h such that the resulting graph has all
weights as positive

Create G’ with one extra node s with O weight edges to all nodes
run Bellman-Ford(G',s)
if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

Why does this work (i.e. how do we guarantee that
reweighted graph has only positive edges)?

89

90

Reweighted graph is positive
fr

Take two nodes u and v

h(u) shortest distance from s to u
h(v) shortest distance from s to v

Claim: A(v)=h(u)+w(u,v)

Why2

Reweighted graph is positive
[

Take two nodes u and v

h(u) shortest distance from s to u
h(v) shortest distance from s to v

Claim: h(v) = h(u)+w(u,v)

If this weren't true, we could have made a shorter path s to v
using u

... but this is in contradiction with how we defined h(v)

91

92

23

4/10/23

Reweighted graph is positive
=

Take two nodes u and v

h(u) shortest distance from s to u
h(v) shortest distance from s to v

h(v) < h(u)+w(u,v)

w(u,v)+h(u)-h(v)=0

What is this2

Reweighted graph is positive
[

Take two nodes u and v

h(u) shortest distance from s to u
h(v) shortest distance from s to v

h(v) < h(u) +w(u,v)
w(u,v)+h(u)-h(v)=0
w(u,v) = w(u,v)+h(u) - h(v)

W(u V) - w(u V) +h(u)— h(V) =0 All edge weights in reweighted graph are
’ ’ non-negative

93 94
L] o y . h
Johnson’s algorithm Johnson’s algorithm
|] |
Create G’ Create G’ o(v)
run Bellman-Ford(G’,s) run Bellman-Ford(G’,s) O(v?)
if no negative-weight cycle if no negative-weight cycle
reweight edges in G reweight edges in G 8(E)
run Dijkstra’s from every vertex run Dijkstra’s from every vertex O(V2logV+VE)

reweight shortest paths based on G

Run-time?

reweight shortest paths based on G 6(E)

Run-time?

95

96

24

All pairs shortest paths
V * Bellman-Ford: O(V2E)
Floyd-Warshall: B(V3)

Johnson’s: O(V2 log V + V E)

97

4/10/23

25

