

1

3

2

An example	$: 8: \circ$ Prove the sum of two odd integers is even

Proof techniques?	$: 8: \%$
example/counterexample	
enumeration	
by cases	
by inference (aka direct proof)	
trivially	
contrapositive	
contradiction	
induction (strong and weak)	

5
c. Proof of inductive step

Proof by induction (weak)

Proving something about a sequence of events by:

1. first: proving that some starting case is true and
2. then: proving that if a given event in the sequence were true then the next event would be true

Proof by induction (weak)

1. Base case: prove some starting case is true
2. Inductive case: Assume some event is true and prove the next event is true
a. Inductive hypothesis: Assume the event is true (usually k or $k-1$)
b. Inductive step to prove: What you're trying to prove assuming the inductive hypothesis is true

Proof by induction example
Prove: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

1. Base case: prove some starting case is true
2. Inductive case: Assume some event is true and prove the next event is true
a. Inductive hypothesis: Assume the event is true (usually k or $\mathrm{k}-1$)
b. Inductive step to prove: What you're trying to prove assuming the inductive hypothesis is true
c. Proof of inductive step

Base case	
Prove: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$	
Show it is true for $\mathrm{n}=1$	
$\sum_{i=1}^{n} i=1=\frac{1 * 2}{2}$	

9

Inductive case

Prove: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
Inductive hypothesis: assume $\mathrm{n}=\mathrm{k}-1$ is true

$$
\sum_{i=1}^{k-1} i=\frac{(k-1) k}{2}
$$

Prove:

$$
\sum_{i=1}^{k} i=\frac{k(k+1)}{2}
$$

10

12

Inductive case: proof

$$
\text { Prove: } \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \mathrm{IH}: \sum_{i=1}^{k-1} i=\frac{(k-1) k}{2}
$$

$$
\begin{aligned}
\sum_{i=1}^{k} & =k+\sum_{i=1}^{k-1} i \quad \text { by definition of sum } \\
& =k+\frac{(k-1) * k}{2} \text { by IH } \\
& =\frac{2 k}{2}+\frac{(k-1) * k}{2} \\
& =\frac{2 k+(k-1) * k}{2} \\
& =\frac{k^{2}+k}{2} \\
& =\frac{k(k+1)}{2} \quad \text { Why does this work? }
\end{aligned}
$$

Layout of a proof by induction

1. State what you're trying to prove

We show that $X X X$ using proof by induction
2. Prove base case
3. State the inductive hypothesis
4. Inductive proof
a. State what you want to show (may include a variable change, e.g., k in instead of n)
b. Show a step by step derivation from the left hand side resulting in the right hand side. Give justifications for steps that are non-trivial

1. We show that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ using proof by induction
2. Base case: $\mathrm{n}=1 \quad \sum_{i=1}^{n} i=1=\frac{1 * 2}{2}$

Inductive proofs
Weak vs. strong?
3. IH, Assume it holds for $\mathrm{k}-1: \sum_{i=1}^{k-1} i=\frac{(k-1) k}{2}$
4. Inductive step: want to show $\sum_{i=1}^{k} i=\frac{k(k+1)}{2}$

$$
\begin{aligned}
\sum_{i=1}^{k} i= & \\
& \ldots \\
= & \frac{k(k+1)}{2}
\end{aligned}
$$

17

Sorting		
What sorting algorithm?		
$\begin{array}{ll} 1 & \text { fo } \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$	$\begin{aligned} & \text { for } j \leftarrow 2 \text { to length }[A] \\ & \text { current } \leftarrow A[j] \\ & i \leftarrow j-1 \\ & \text { while } i>0 \text { and } A[i]>\text { current } \\ & A[i+1] \leftarrow A[i] \\ & i \leftarrow i-1 \\ & A[i+1] \leftarrow \text { current } \end{aligned}$	

19

Sorting

Input: An array of numbers A
Output: The number in sorted order, i.e.,

$$
A[i] \leq A[j] \forall i<j
$$

18

20

Does it terminate?	
Is it correct?	
How long does it take to run?	
Memory usage?	

21

23

22

24

Loop invariant		$\because: \%$ $\because \because:$ $\because: \%$ $\because: \%$
Loop invariant: A statement about a loop that is true before the loop begins and after each iteration of the loop.		
At the start of each iteration of the for loop of lines $1-7$ the subarray $A[1 . . j-1]$ is the sorted version of the original elements of $A[1 . . j-1]$		
Insertion-Sort (A)		
1 for $j \leftarrow 2$ to length[A]		
	Proof?	
$4 \quad$ while $i>0$ and $A[i]>$ current	Proof?	
$5 \quad A[i+1] \leftarrow A[i]$		
$6 \quad i \leftarrow i-1$		
$7 \quad A[i+1] \leftarrow$ current		

25

27

Loop invariant At the start of each iteration of the for loop of lines 1-7 the subarray $A[1 . . j-1]$ is the sorted version of the original elements of $A[1 . . j-1]$	
Proof by induction - Base case: invariant is true before loop - Inductive case: it is true after each iteration	

26

Asymptotic notation

Precisely calculating the actual steps is tedious and not generally useful

Different operations take different amounts of time. Even from run to run, things such as caching, etc. cause variations

We want to identify categories of algorithmic runtimes

29

Runtime examples						: $\because: 8$.
	n	$n \log n$	n^{2}	n^{3}	2^{n}	n !
$n=10$	<1 sec	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	<1 sec	
$n=30$	<1 sec	$<1 \mathrm{sec}$	<1 sec	$<1 \mathrm{sec}$	<18 min	10^{25} years
$n=100$	<1 sec	$<1 \mathrm{sec}$	1 sec	1 s	10^{17} years	very long
$n=1000$	<1 sec	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long
$n=10,000$	<1 sec	$<1 \mathrm{sec}$	2 min	12 days	very long	very long
$n=100,000$	<1 sec	2 sec	3 hours	32 years	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long

31

For example...	: $\because: 8$.
$f_{1}(n)$ takes n^{2} steps $f_{2}(n)$ takes $2 n+100$ steps $f_{3}(n)$ takes $3 n+1$ steps	
Which algorithm is better? Is the difference between f_{2} and f_{3} important/significant?	

30

32

Big O: Upper bound

$O(g(n))$ is the set of functions:
$O(n))=\left\{\begin{array}{l}f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq(n) \leq \operatorname{cg}(n) \text { for all } n \geq n_{0}\end{array}\end{array}\right\}$
$\begin{aligned} & \text { We can bound the function } f(n) \\ & \text { above by some constant factor } \\ & \text { of } g(n)\end{aligned}$

33

Big O: Upper bound		
$O(g(n))$ is the set of functions:		
$\alpha g(n))=\left\{\begin{array}{l} f(n): \begin{array}{l} \text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq \operatorname{cog}(n) \text { for all } n \geq n_{0} \end{array}, \end{array}\right.$		
$O\left(n^{2}\right)=\begin{array}{rlc} f_{1}(x) & =3 n^{2} \\ f_{2}(x) & = & 1 / 2 n^{2}+100 \\ f_{3}(x) & =n^{2}+5 n+40 \\ f_{4}(x) & = & 6 n \end{array}$		

35

Big O: Upper bound

Big O: Upper bound

$O(g(n))$ is the set of functions:

34

Big O: Upper bound

$O(g(n))$ is the set of functions:
$O(n))=\left\{\begin{array}{ll}f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\end{array}\end{array}\right\}$

Generally, we're most interested in big O notation since it is an upper bound on the running time

Omega: Lower bound

$\Omega(g(n))$ is the set of functions:
$\Omega(g(n))=\left\{\begin{array}{ll}f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq c g(n) \leq f(n) \text { for all } n \geq n_{0}\end{array}\end{array}\right\}$

38

Omega: Lower bound

Theta: Upper and lower bound
$\Theta(g(n))$ is the set of functions:
$\Theta(g(n))= \begin{cases}f(n): \begin{array}{l}\text { there exists positive constants } c_{1}, c_{2} \text { and } n_{0} \text { such that } \\ 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}\end{array}\end{cases}$

$$
f_{1}(x)=3 n^{2}
$$

$$
\Omega\left(n^{2}\right)=\begin{aligned}
& f_{2}(x)=1 / 2 n^{2}+100 \\
& f_{3}(x)=n^{2}+5 n+40
\end{aligned}
$$

$$
f_{4}(x)=6 n^{3}
$$

41

43

42

44

45

46

worst-case vs. best-case vs. average-case

worst-case: what is the worst the running time of the algorithm can be?
best-case: what is the best the running time of the algorithm can be?
average-case: given random data, what is the running time of the algorithm?

Don't confuse this with O, Ω and Θ. The cases above are situations, asymptotic notation is about bounding particular situations

Proving bounds: find constants that satisfy inequalities

Show that $5 n^{2}-15 n+100$ is $\Theta\left(n^{2}\right)$

Step 1: Prove $O\left(n^{2}\right)$ - Find constants c and n_{0} such that $5 n^{2}-15 n+100 \leq c n^{2}$ for all $n>n_{0}$

$$
\begin{aligned}
c n^{2} & \geq 5 n^{2}-15 n+100 \\
c & \geq 5-15 / n+100 / n^{2}
\end{aligned}
$$

Let $n o=4$ and $c=5-15 / 4=1.25$ (or anything less than 1.25). $15 / \mathrm{n}$ is always decreasing and we ignore $100 / \mathrm{n}^{2}$ since it is always between 0 and 100.

Proving bounds

Step 2: Prove $\Omega\left(n^{2}\right)$ - Find constants c and n_{0} such that $5 n^{2}-15 n+100 \geq c n^{2}$ for all $n>n_{0}$

$$
\begin{aligned}
c n^{2} & \leq 5 n^{2}-15 n+100 \\
c & \leq 5-15 / n+100 / n^{2}
\end{aligned}
$$

49

50
O

Disproving bounds

Is $5 n^{2} O(n)$?

Assume it's true.

That means there exists some c and n_{0} such that

$$
\begin{gathered}
5 n^{2} \leq c n \text { for } n>n_{0} \\
5 n \leq c \text { contradicition! }
\end{gathered}
$$

Some rules of thumb

Multiplicative constants can be omitted

- $14 n^{2}$ becomes n^{2}
- $7 \log n$ become $\log n$

Lower order functions can be omitted - $n+5$ becomes n

- $n^{2}+n$ becomes n^{2}
n^{a} dominates n^{b} if $a>b$
- n^{2} dominates n, so $n^{2}+n$ becomes n^{2}
- $n^{1.5}$ dominates $n^{1.4}$

Some rules of thumb

a^{n} dominates b^{n} if $a>b$
3^{n} dominates 2^{n}
Any exponential dominates any polynomial
3^{n} dominates n^{5}
2^{n} dominates n^{c}
Any polynomial dominates any logorithm

- n dominates $\log n$ or $\log \log n$
- n^{2} dominates $n \log n$
- $n^{1 / 2}$ dominates $\log n$

Do not omit lower order terms of different variables $\left(n^{2}+m\right)$ does not become n^{2}

Big 0	:\%:\%
$n^{2}+n \log n+50$	
$2^{n}-15 n^{2}+n^{3} \log n$	
$n^{\log n}+n^{2}+15 n^{3}$	
$\mathrm{n}^{5}+\mathrm{n}!+\mathrm{n}^{n}$	

54

Some examples

- $\mathrm{O}(1)$ - constant. Fixed amount of work, regardless of the input size
- add two 32 bit numbers
- determine if a number is even or odd
- sum the first 20 elements of an array
- delete an element from a doubly linked list
- $\mathrm{O}(\log n)$ - logarithmic. At each iteration, discards some portion of the input (i.e. half) - binary search

Some examples

- $\mathrm{O}(n)$ - linear. Do a constant amount of work on each element of the input
- find an item in a linked list
- determine the largest element in an array
- O($n \log n$) log-linear. Divide and conquer algorithms with a linear amount of work to recombine
- Sort a list of number with MergeSort
- FFT

55

57

