

1

3

Graphs

A graph is a set of vertices V and a set of edges $(u, v) \in E$ where $u, v \in V$

4

5

8

7

9

10

12

11

13

14

16

15

Terminology

Cycle - A subset of the edges that form a path such that the first and last node are the same

Edges: (A,B), (B,D), (D,A)
Path: B, A, D, B

17

18

20

Terminology

Cycle - A subset of the edges that form a path such that the first and last node are the same

19

Terminology

Cycle - A subset of the edges that form a path such that the first and last node are the same

21

22

24

23

25

26

28

27

29

30

32

31

33

34

36

35

37

38

When do we see graphs in real life problems?

Transportation networks (flights, roads, etc.)
Communication networks

Web

Social networks
Circuit design
Bayesian networks

40

39

Representing graphs

41

42

44

Representing graphs

Adjacency list - Each vertex $u \in V$ contains an adjacency list of the set of vertices v such that there exists an edge $(u, v) \in E$

$$
\begin{aligned}
& \mathrm{A}: \\
& \mathrm{B}: \\
& \mathrm{B}: \\
& \mathrm{C}: \\
& \mathrm{D}: \mathrm{D} \\
& \mathrm{D}: \\
& \mathrm{E}: \\
& \mathrm{A} \\
& \mathrm{D}
\end{aligned}
$$

43

Representing graphs

Adjacency matrix - $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:
$a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}$
ABCDE
A 01010
B 100010
C 000010
D $\begin{array}{llllll}1 & 1 & 1 & 0 & 1\end{array}$
E 00010

45

46

Representing graphs

Adjacency matrix - A $|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:
$a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}$

48

Representing graphs

Adjacency matrix - A $|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

ABCDE
A 01010
B 1001010

C	0	0	0	1	0

D 111101
E 00010

47

Representing graphs

Adjacency matrix - $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:
$a_{i j}=\left\{\begin{array}{lc}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{array}\right.$
ABCDE

A Q1 000
B 00000
C 00 Q 10
D 110000
E 0001 a

| Adjacency list vs.
 adjacency matrix |
| :---: | :---: |
| Adjacency list

 Pros adjacency matrix cons? |

50

Sparse adjacency matrix

Rather than using an adjacency list, use an adjacency hashtable

52

Adjacency list vs. adjacency matrix	
Adjacency list Adjacency matrix Sparse graphs (e.g. web) Space efficient Must traverse the adiacency list to discover is an edge exists Dense graphs Constant time lookup to discover if an edge exists Simple to implement For non-weighted graphs, only requires boolean matrix Can we get the best of both worlds?	

51

53

54

Graph algorithms/questions

Graph traversal (BFS, DFS)
Shortest path from a to b
unweighted

- weighted positive weights
negative/positive weights
Minimum spanning trees

Are all nodes in the graph connected?
Is the graph bipartite?

Weighted graphs

Adjacency matrix

$a_{i j}= \begin{cases}\text { weight } & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}$
A B C D E
A 08030
B 80020
C 000100
D 3210013
E 000130
(c)

55
DFS and BFS
How are they implemented?
What would be the result starting at A ?
If you ask for the children of a node,
they're given in alphabetical order.
Run-time (in terms of V and E):

- adjacency list
- adjacency matrix

57

60

61

62

63

64

65

66

67

BFS for graphs

What order will BFS visit starting at A (again, assume children are enumerated alphabetically)?

68

69

70

72

71

DFS on graphs

73

74

DFS for graphs

What order will DFS visit starting at A (again, assume children are enumerated alphabetically)?
$\mathrm{DFS}(G)$
1 for all $v \in V$
ABCEDFG
2 visited $[u] \leftarrow$ false
$\begin{array}{ll}3 & \text { for all } v \in V \\ 4 & \text { if !visited }[v] \\ 5\end{array}$
DFS-Visit (v)
DFS-VISIT(u)
1 visited $[u] \leftarrow$ true
2 PreVisit(u)
for all edges $(u, v) \in E$ if ! visited $[v]$

DFS-Visit (v)
${ }^{5} \quad$ PostVisit(u)
76

DFS for graphs

What order will DFS visit starting at A (again, assume children are enumerated alphabetically)?

DFS (G)
1 for all $v \in V$
${ }_{3}$ for all $v \in V$ visited $[u] \leftarrow$ false
$\begin{array}{ll}3 & \text { for all } v \in V \\ 4 & \text { if !visited }[v]\end{array}$
$\begin{array}{lc}4 & \text { if }!\text { visited }[v] \\ 5 & \text { DFS-VISIT }(v)\end{array}$

DFS-VIsIT (u)
1 visited $[u] \leftarrow$ true
PreVisit(u)
3 for all edges $(u, v) \in E$
4 (f) $\begin{aligned} & \text { if }!v i s i t e d ~\end{aligned}[v]$
$6 \operatorname{PostV}_{\operatorname{ISIt}(\mathrm{U})}$ DFS-Visit (v)

75

What does DFS do?

Finds connected components

Each call to DFS-Visit from DFS starts exploring a new set of connected components

Helps us understand the structure/connectedness of a graph

77

Running time of graph BFS/DFS
Nothing changes!
Adjacency list a O(IV\|+

78

79

82

84

Topological sort

Topological-Sort $1(G)$
1 Find a node v with no incoming edges
2 Delete v from G
3 Add v to linked list
4 Topological-Sort1 (G)

83

85

86

88

Topological sort

Topological-Sort $1(G)$

1	Find a node v with no incoming edges	underwear
2	Delete v from G	pants
3	Add v to linked list	

4 Topological-Sort $1(G)$

watch

87

89

Running time?	
Topological-Sort1 (G)	
1 Find a node v with no incoming edges	
2	Delete v from G
3	Add v to linked list
4	Topological-Sort1 (G)

90

92

91

Running time?		
```Topological-Sort \(1(G)\) 1 Find a node \(v\) with no incoming edges 2 Delete \(v\) from \(G\) 3 Add \(v\) to linked list 4 Topological-Sort \(1(G)\)```		
How many calls?	\|V	

93


94

## Topological sort 2

```
Topological-Sort \(2(G)\)
 for all edges \((u, v) \in E\)
 active \([v] \leftarrow\) active \([v]+1\)
 for all \(v \in V\)
 if active \([v]=0\)
 Enqueue \((S, v)\)
 while ! \(\operatorname{Empty}(S)\)
 \(u \leftarrow \operatorname{DEQUEUE}(S)\)
 add \(u\) to linked list
 for each edge \((u, v) \in E\)
 active \([v] \leftarrow\) active \([v]-1\)
 if active \([v]=0\)
 Enqueue \((S, v)\)
```

Can we do better?
Topological-Sort $1(G)$
1 Find a node $v$ with no incoming edges   2 Delete $v$ from $G$   3 Add $v$ to linked list   4 Topological-Sort1 $(G)$

95

## Topological sort 2

```
Topological-Sort2 \((G)\)
for all edges \((u, v) \in E\)
active \([v] \leftarrow\) active \([v]+1\)
for all \(v \in V\)
if active \([v]=0\)
 Enqueue(\(S, v\))
 while ! \(\operatorname{Empty}(S)\)
 \(u \leftarrow \operatorname{DEQUEUE}(S)\)
 add \(u\) to linked list
 for each edge \((u, v) \in E\)
 active \([v] \leftarrow\) active \([v]-1\)
 if active \([v]=0\)
 \(\operatorname{Enqueue}(S, v)\)
```

97

Topological sort 2
Topological-Sort $2(G)$
1
2

98

## Running time?

$$
\begin{aligned}
& \text { How many times do we process each node? } \\
& \text { How many times do we process each edge? } \\
& \mathrm{O}(|\mathrm{~V}|+|\mathrm{E}|) \\
& \text { Topological-Sort 2( } G \text { ) } \\
& 1 \text { for all edges }(u, v) \in E \\
& \text { active }[v] \leftarrow \text { active }[v]+1 \\
& \text { for all } v \in V \\
& \text { if active }[v]=0 \\
& \text { Enqueue( } S, v \text { ) } \\
& \text { while ! Empty }(S) \\
& u \leftarrow \operatorname{Dequeue}(S) \\
& \text { add } u \text { to linked list } \\
& \text { for each edge }(u, v) \in E \\
& \text { active }[v] \leftarrow \text { active }[v]-1 \\
& \text { if active }[v]=0 \\
& \operatorname{Enqueue}(S, v)
\end{aligned}
$$

## Topological sort 2

Topological-Sort2 $(G)$
for all edges $(u, v) \in E$

$$
\text { active }[v] \leftarrow \text { active }[v]+1
$$

for all $v \in V$
if active $[v]=0$
Enqueue $(S, v)$
while ! $\operatorname{Empty}(S)$
$u \leftarrow \operatorname{Dequeve}(S)$ add $u$ to linked list for each edge $(u, v) \in E$
active $[v] \leftarrow$ active $[v]-1$
if active $[v]=0$ Enqueue $(S, v)$

99


101

## Connectedness

Given an undirected graph, for every node $u \in V$, can we reach all other nodes in the graph? Algorithm + running time

Run BFS or DFS-Visit (one pass) and mark nodes as we visit them. If we visit all nodes, return true, otherwise false.

Running time: $\quad \mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

102

## Strongly connected

Given a directed graph, can we reach any node v from any other node u?

Can we do the same thing?

Strongly connected
Given a directed graph, can we reach any node $v$
from any other node u?
Can we do the same thing?

Transpose of a graph
Strongly connected

Given a graph G, we can calculate the transpose of a graph $G^{R}$ by reversing the direction of all the edges

G
$G^{R}$


Running time to calculate GR?

$\theta(|\mathrm{V}|+|\mathrm{E}|)$

Strongly-Connected(G)

- Run DFS-Visit or BFS from some node u
- If not all nodes are visited: return false
- Create graph Gr
- Run DFS-Visit or BFS on $G^{R}$ from node $u$
- If not all nodes are visited: return false
- return true

105
What do we know after the second pass?
All nodes can reach u. Why?

- We can get from $u$ to every node in $G^{R}$, therefore, if we reverse the edges (i.e. G), then we have a path from every node to $u$
Which means that any node can reach any other node. Given any two nodes $s$ and $t$ we can create a path through $u$

What do we know after the first pass?
Is it correct?

$$
\text { Starting at } u \text {, we can reach every node }
$$

106

Shortest path algorithms
Dijkstra's

## Bellman-Ford

## Floyd-Warshall

Johnson's

108

## Runtime?

Strongly-Connected(G)

- Run DFS-Visit or BFS from some node u $\quad \mathrm{O}(|\mathrm{V}|+|E|)$
- If not all nodes are visited: return false $\mathrm{O}(|\mathrm{V}|)$
- Create graph GR
$\theta(|\mathrm{V}|+|E|)$
- Run DFS-Visit or BFS on $G^{R}$ from node $u \quad \mathrm{O}(|\mathrm{V}|+|E|)$
- If not all nodes are visited: return false $\mathrm{O}(|\mathrm{V}|)$
- return true

$$
\mathrm{O}(|\mathrm{~V}|+|\mathrm{E}|)
$$

107

## Shortest path algorithms

109

