DYNAMIC PROGRAMMING:
EVEN MORE FUN!

David Kauchak
CS 140 — Spring 2023

3/27/23

Admin

Assignment 7

Assignment 8

Longest increasing subsequence

Given a sequence of numbers X = x;, X2, ..., X, find
the longest increasing subsequence

(i1, i2, +++, im), that is a subsequence where numbers in
the sequence increase.

52863697

Longest increasing subsequence

Given a sequence of numbers X = x;, xj, ..., X, find
the longest increasing subsequence

(i1, iz, «+., im), that is a subsequence where numbers in
the sequence increase.

528636097

3/27/23

1b: recursive solution 1b: recursive solution
[[
52863697 52863697
I I
Is 5 part off the LIS? Two options:
Either 5 is in the
LIS orit’s not
8 9

1b: recursive solution
=

52863697

include 5 I

5+LIS8 6 36 9 7)

1b: recursive solution

52863697

include 5 I

5+LIS(8 6 369 7)
-

What is this function exactly?

longest increasing longest increasing
sequence of the sequence of the

numbers numbers starting with 8

10

11

3/27/23

1b: recursive solution 1b: recursive solution
[[
52863697 52863697
include 5 I include 5 I
5+LIS(8 6 36 9 7) 5+LIS(8 6 36 97)
- —
What is this function exactly? longest increasing sequence of
/ the numbers starting with 8
longedtincreasing This would allow for the option of
sequencdof the sequences starting with 3 which Do we need to consider anything
numbers are NOT valid! else for subsequences starting at 5?
12 13
1b: recursive solution 1b: recursive solution
[[
52863697 52863697
include 5 I don’t
include 5
5+LIS(8 6369 7) LIS2 8 6 36 97)
5+ LIS’(6 3609 7) Anything else?
) Technically, this is fine, but now we have
S+LIS(6 9 7) LIS and LIS’ to worry about.
5+ LIS(9 7) Can we rewrite LIS in terms of LIS'?
5+ LIS'(7)
14 15

3/27/23

1b: recursive solution 1b: recursive solution
[[
LIS(X)=max{LIS'(i)} LIS(X)=max{LIS"'(i)}
Longest increasing sequence for X Longest increasing sequence for X
is the longest increasing sequence is the longest increasing sequence
starting at any element starting at any element
And what is LIS’ defined as (recursively)? LIS'() =1+ max LIS'(j)
Ji<jsnand x;>x;
Longest increasing sequence starting at i
16 17
2: DP solution (bottom-up) 2: DP solution (bottom-up)
[[
Trs 1r: e P
LIS'()) = 1+ j:i<jsr?}31)((1xj>xi LIS'G) LIST(@) = 1+ j:i<jsrrlr}12111)t(ixj>xiLIS G)
LIS : LIS : 1
52863697 52863697
18 19

3/27/23

2: DP solution (bottom-up) 2: DP solution (bottom-up)
= [
LIs'@) = 1+ Ji<jzn g xj>xi LIS'G) LIs'(@) = 1+ j:i<jsrr1111?1)c(ixj>xiLIS,(j)
LIS™: 1 LIS™: 11
52863697 52863697
T T
20 21

2: DP solution (bottom-up) 2: DP solution (bottom-up)
fr [
LIS'(@) = 1+ j:i<jsr?}31)((1xj>xi LIS'() LIs'(@) = 1+ j:i<jsrr11}12111)¢(ixj>xiLISI(j)
LIS’ : 11 LIS™: 211
52863697 52863697
T T
22 23

3/27/23

2: DP solution (bottom-up) 2: DP solution (bottom-up)
fr [
LIs'() = 1+j:i<jsrlzr}33éxj>xiusl(j) LIs'(1) = 1+j:i<jsr?}1?1)éxj>xiLIS,(j)
LIS’ : 321 1 LIS’ 23211
52863697 52863697
T T
24 25

2: DP solution (bottom-up) 2: DP solution (bottom-up)
fr [
LIs'() =1 +j:i<jsr?}12711)((1xj>xi LIS'() Lis'w) =1 +j:i<jsrrlr}12111)¢(ixj>xiLISI(j)
LIS : 223211 LIS: 4223 2 11
52863697 52863697
T T
26 27

3/27/23

2: DP solution (bottom-up) 2: DP solution (bottom-up)
fr [
LIs'() = 1+j:i<jsrlzr}33éxj>xiusl(j) LIs'(1) = 1+j:i<jsr?}1?1)éxj>xiLIS,(j)
LIS:3 4 2 232 11 LIS: 3/4(2 2 3 2 1 1
52863697 52863697
! LIS(X) = max{LIS'(i)}
28 29

2: DP solution (bottom-up) 2: DP solution (bottom-up)
|] |
Trs 1r: e P
LS' =1+ max LIS() LS'(= 1+ max xjm-L}(J)
What does the data structure for 1-D array: only one thing changes
storing answers look like? for recursive calls
30 31

3/27/23

2: DP solution (bottom-up)

LIS'() = 1+ LIS'(j)

... max. . .
Ji<jsnand xj>xi
What are the “smallest” possible subproblems?

To calculate LIS’(n), what are all the subproblems we
need to calculate? This is the “table”.

How should we fill in the table?

Where will the answer be?

2: DP solution (bottom-up)
o

LIS'()= 1+ max

Jii<jsn and xj>xi

LIS'(j)

What are the “smallest” possible subproblems?

LIS’(n) and that is well-defined for this problem

To caleulate LIS’(i), what are all the subproblems we need to calculate?
This is the “table”.

LS'(1) ... LIS'(n)

How should we fill in the table?
n>1

Where will the answer be?

max(LIS’(1)...LIS’(n))
32 33
o N
2: DP solution (bottom-up) 2: DP solution (bottom-up)
[|
LIS(X) LIS(X)
1 n+« LENGTH(X) 1 n+« LENGTH(X
2 create array lis with n entries 2 cr ray
3 fori—mntol 3 fori—ntol start from the end (bottom)
4 maxr «— 1 1 mar — 1
5 for j—i+1ton 5 for j—i+1ton
6 if X[j] > X[i] 6 if X[j] > XTi]
7 if 1+ lis[j] > max 7 if 1+ lis[j] > max
8 max — 1+ lis[j] 8 max — 1+ lis[j]
9 lisli] «— max 9 lis[i] < max
10 mazx — 0 10 mazx — 0
11 forz+— lton 11 forz+—1ton
12 if lis[i] > max 12 if lis[i] > max
13 mazx — lisli] 13 mazx — lisli]
14 return max 14 return max
34 35

3/27/23

2

: DP solution (bottom-up)

LIS(X)

1 n < LENGTH(X) LIS'() = 1+ max
2 create array lis with n entries Ji<jsnand xj>xi
3 fori—mntol

4 maz — 1

5 for j—i+1ton

6 if X[5] > X[i]

7 if 1+ lis[j] > max

8 max — 1+ lis[j]

9 lis|i] < max

10 max 0

11 fori—1lton

12 if lisfi] > max

13 max — lisli]

14 return maxr

LIS'(j)

2: DP solution (bottom-up)

LIS(X)

1 n+« LENGTH(X)

2 create array lis with n entries

3 fori—mntol

4 max — 1

5 for j—i+1ton

6 if X[j] > X[i]

7 if 1+ lis[j] > max

8 max — 14 lis[j]

9 lis[i] < max

10 max 0

1L fori—1ton LIS(X) = max{LIS'(i)}
12 if lis[i] > max i
13 max — lis]i]

14 return maxr

36

37

3

= =
[=R=R RS M- S
w

: Analysis

(X)
n — LENGTH(X) Space requirements?
create array lis with n entries
fori—mntol

maz — 1 Running time?

for j—i+1ton

if X[j] > X[i]
if 14 lis[j] > max
max — 1+ lis[j]

lis[i] « max

maz — 0

fori—1ton
if lisfi] > max
max — lisli]
return mazx

3: Analysis

LIS(X)

1 n < LENGTH(X) Space requirements: O(n)
2 create array lis with n entries

3 fori—mntol

4 maz «— 1 Running time: O(n?)
5 for j—i1+1ton

6 if X[j] > X[i]

7 if 1+ lis[j] > max

8 mazx — 1+ lis[j]

9 lis[i] « mazx

10 max — 0

11 fori—1lton

12 if lis[i] > max

13 max « lisli]

14 return max

38

39

3/27/23

Another solution
[

Can we use LCS to solve this problem?

52863697
LCS

23566789

Another solution
[

Can we use LCS to solve this problem?

52863697
LCS

23566789

40

41

Edit distance
(aka Levenshtein distance)

transform string s; into string s2

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to

ABACED [E=) ABACCED [EX) DABACCED

Edit distance
(aka Levenshtein distance)

transform string s into string s»

ABACED

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to

42

43

10

3/27/23

Edit distance
(aka Levenshtein distance)

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s; into string s2

BACED [E) BACED

Edit distance
(aka Levenshtein distance)
Edit distance between two strings is the minimum number

of insertions, deletions and substitutions required to
transform string s into string s»

=) BACE

ABACED [E) BACE

44

45

Edit distance o g
L Edit distance examples
(aka Levenshtein distance)
|
Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to Edit(Kitten, Mitten) = 1
transform string s; into string s2
Operations:
Sub ‘M’ for ‘K’ Mitten
ABACED [X) ABADED [X) ABADE
46 a7

11

3/27/23

Edit distance examples Edit distance examples
| |
Edit(Happy, Hilly) = 3 Edit(Banana, Car)= 5
Operations: Operations:
Sub ‘a’ for ‘i’ Hippy Delete ‘B’ anana
Sub ‘I’ for ‘p’” Hilpy Delete ‘a’ nana
Sub ‘I for ‘p’” Hilly Delete ‘n’ naa
Sub ‘C’ for ‘n” Caa
Sub ‘@’ for ‘r Car
48 49

Edit distance examples
=

Edit(Simple, Apple) = 3

Operations:

Delete ‘S’ imple
Sub ‘A’ for i’ Ample
Sub ‘m’ for ‘p’ Apple

Edit distance
=

Why might this be useful?

50

51

12

3/27/23

Is edit distance symmetric? Calculating edit distance
| |
that is, is Edit(s1, s2) = Edit(s2, s1)2
X=ABCBDAB
Edit(Simple, Apple) =? Edit(Apple, Simple)
Y=BDCABA
Why?
sub i for | —sub § for T
delete. :i’ — insert :': Ideas? How can we break
insert i’ — delete i this into subproblems?
52 53

Calculating edit distance Calculating edit distance
fr [
X=ABCBDA? X=ABCBDA?
Y=BDCAB? Y=BDCAB?
Operations: Insert , .
Delete ﬁl\:)s\:n;z:h\il :q?(:ftireer:tthe same?
Substitute
54 55

13

3/27/23

Insert Insert
| |
X=ABCBDA? X=ABCBDA??
— 23 _ 28\
Y=BDCAB(?) Y=BDCAB?)
How can we use insert to transform X into Y2 insert the last character of Y to the end of X
56 57
Insert Insert
| |
X=ABCBDA?? X=ABCBDA??
Edit
Y=BDCAB@> Y=BDCAB?
How does this make the problem smaller? Edlt(X, Y) —14 Edl.t(len, Ylmm,l)
58 59

14

3/27/23

Delete Delete
|] |
_ /A
X=ABCBDA?) X=ABCBDA?
Edit
Y=BDCAB? Y=BDCAB?|
How can we use delete to transform X into Y2 Edit(X, Y) —1+ Edl‘t(XlN_,,,l, Ylm)
60 61
Substition Substition
|] |
X=ABCBDA? X=ABCBDA?
¥ | Edit
Y=BDCAB? Y=BDCAB?
How can we use substitution to transform X into Y2 Edll(X, Y) 1+ Edl.l‘(X]mnfl ,Ylmmfl)
62 63

15

3/27/23

Anything else? Equal
[[
X=ABCBDA? X=ABCBDA?
Y=BDCAB? Y=BDCAB?
What if the last characters are equal?
64 65
Equal 1b: recursive solution - combining results
[[
X=ABCBDA? Insert: Edit(X,Y)=1+Edit(X, ,.Y, ,.\)
- Delete: Edit(X,Y)=1+Edit(X, .Y)
Y=BDCAB? Cay
nFYm
Substitute: ~ Edlit(X,Y) =1+ Edit(X, , .Y, ,.1)
Xo=Yn _ .
Edit(X,Y) = Edit(X, , .Y,) Bqual: Edit(X,Y)=Edit(X, , .Y,)
How do we decide between these?
66 67

16

3/27/23

1b: recursive solution - combining results 2: DP solution (bottom-up)
|] |
1+ EditX, .Y,) insertion
Edit(X,Y)=min 1+ Edit(X, .Y,) deletion
Diff (x,,y,)+Edit(X, .Y, ,.) equal/substitution
1+ EditX, .Y,) insertion
Edit(X,Y)=min L+ Edic(X, 1.7,) deletion What does the data structure for
Diff (x,,y,)+Edit(X,_,.,.Y,) equal/substitution Storing answers look like?
1: if they're different
0O: if they’re the same
68 69
2: DP solution (bottom-up) 2: DP solution (bottom-up)
|] |
1+ Edit(X, .Y, ,..) insertion 1+ Edit(X, .Y,) insertion
Edit(X,Y)=min 1+ Edit(X, .Y,) deletion Edit(X,Y)=min 1+ Edit(X, .Y,) deletion
Diff (x,,y,)+ Edit(X, .Y,) equal/substitution Diff (x,,y,)+ Edit(X, , .Y, ,;) equal/substitution
What are the “smallest” possible subproblems?
Edit(Xy. 1 Y1..5) To calculate d(n, m), what are all the subproblems we
need to calculate? This is the “table”.
d[i, j]: edit distance between X;_; and Yi.j How should we fill in the table?
Where will the answer be?
70 71

17

3/27/23

2: DP solution (bottom-up)

1+ Edi(X, .Y, 1)
1+ Edit(X, 15,)
Diff (x,,y,)+Edit(X, .Y, ,.) equal/substitution

insertion

Edit(X,Y)=min deletion

What are the “smalllest” possible subproblems?
Edit(X, “") = len(X) and Edit(“”, Y) = len(Y)

To calculate d(n, m), what are all the subproblems we need to calculate? This is
the “table”.
i<nandj<m

How should we fill in the table?
i=1., j=1.

Where will the answer be?
dln,m]

2: DP solution (bottom-up)

1+ Edit(X, .Y,) insertion
1+ Edit(X, , .Y,) deletion

Diff (x,,y,)+Edit(X, .Y, ,_) equal/substitution

Edit(X,Y)=min

Epit(X.Y)
m «— length[X]
n « lengthlY]
for i — 0 tom
d[z,0] — i
for j—0ton
d[0, 5] —j
for i —1tom
for j— 1ton
dfi,j] = min(1+d[i — 1, j],
1+df.j—1],
DIFF (24, ;) +d[i — 1,5 — 1])

P = R N Ry

©

10 return dfm, n|

72

73

3: analysis

1+ Edit(X, .Y, 1) insertion
L+ Edit(X, 5, 0)

Diff (x,,y,)+ Edit(X, .Y,) equal/substitution

Edit(X,Y)=min deletion

Epir(X.Y)

1 m « length[X])

2 n« lengthlY] Space requremenTs?
3 fori—0tom

4 d[i,0] — i

5 forj—0ton Running time?

6 d[0,j] —j

7 fori—1ltom

8 for j— 1ton

9 dli,j] = min(1+d[i — 1, 5],

1+ dfi.j— 1],
DIFF (24,45) +d[i — 1,5 — 1])
10 return d[m,n]

3: analysis

1+ Edit(X, .Y,) insertion
1+ Edit(X, .Y,) deletion

Diff (x,,y,)+ Edit(X, , .Y, ,,) equal/substitution

Edit(X,Y)=min

Epir(X.Y)
m «— length[X]
n « lengthlY]
for i — 0 tom
d[i,0] — @
for j — 0 ton
d[0,j] —j
fori—1tom
for j— 1ton
d[i,j] = min(1+d[i — 1, j],
14 dfi.j— 1],
DIFF(xi, 4;) +d[i — 1,5 — 1])

Space requirements: ©(nm)

Running time: O(nm)

© 0O W

10 return dfm,n]

74

75

18

3/27/23

Edit distance variants
[

o Only include insertions and deletions
What does this do to substitutionse

o Include swaps, i.e. swapping two adjacent characters counts as
one edit

* Weight insertion, deletion and substitution differently

* Weight specific character insertion, deletion and substitutions
differently

o Length normalize the edit distance

https://leetcode.com/problems /house-robber/

198. House Robber

& 17.3¢

Companies

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the
only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and it will
automatically contact the police if two adjacent houses were broken into on the same night.

Given an integer array nuss representing the amount of money of each house, return the maximum amount of money you
can r0b tonight without alerting the police.

Example 1:

Input: nums = [1,2,3,1]

output: 4

Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4

Example 2:

Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob =2 + 9 + 1 = 12.

76

hitps:/ /leetcode.com/problems/interleaving-string,/description/

Given strings 1, 52, and <3, find whether 3 i formed by an interleaving of 1 and <2

i two strings < and ¢ is < and ¢ are divided into n and substrings respectively,
such that

P

« The interleavings s; + £ + 53 + th + 53+ 5+ o0 OF s+ 510 G 4 53 4ty o 53 4

Note: a + b is the concatenation of strings 2 and b

Example 1:

=
<

Input: s1 = "aabcc”, s2 = “dobea”, s3 = "aadbbebeac”

Output: true

Explanation: One way to obtain s3 is

Split s1 into s1 = "aa" + "be

Interleaving the two splits, we get "aa" + "dbbc” » “aadbbcbeac.
Since 53 can be obtained by interleaving s1 and 52, we return true.
Example 2:

Input: s1 = "aabcc”, 2 = “dobea", s3 = "aadbbbacce”

output: false

Explanation: Notice how it is impossible to interleave s2 with any other string to obtain
s3.

79

78

19

